
Online Continual Learning for
Interactive Instruction Following Agents

Byeonghwi Kim∗ Minhyuk Seo∗ Jonghyun Choi†
Seoul National University

{byeonghwikim,jonghyunchoi@snu.ac.kr}, dbd0508@yonsei.ac.kr

Abstract: In learning an embodied agent executing daily tasks via language di-
rectives, the literature largely assumes that the agent learns all training data at the
beginning. We argue that such a learning scenario is less realistic since a robotic
agent is supposed to learn the world continuously as it explores and perceives it.
To take a step towards a more realistic embodied agent learning scenario, we pro-
pose two continual learning setups for embodied agents; learning new behaviors
(Behavior Incremental Learning, Behavior-IL) and new environments (Environ-
ment Incremental Learning, Environment-IL) For the tasks, previous ‘data prior’
based continual learning methods maintain logits for past tasks, but the stored in-
formation is often insufficiently learned and requires task boundary information,
which might not always be available. Here, we propose to update them based on
confidence scores without task boundary information during training (i.e., task-
free) in a moving average fashion, named Confidence-Aware Moving Average
(CAMA). In the Behavior-IL and Environment-IL setups, our CAMA outper-
forms prior state-of-the-art in our empirical validations notably. The code with the
project page is available at https://github.com/snumprlab/cl-alfred.

1 Introduction

Recent advances in computer vision, natural language processing, and embodied AI have led to
various benchmarks for robotic agents, encompassing navigation [1, 2, 3, 4], object interaction [5, 6,
7, 8], and interactive reasoning [9, 10]. To create more realistic agents, challenging benchmarks [11,
12] require all of these tasks to complete complex tasks based on language directives.

However, most embodied AI literature assumes that all training data are available from the outset but
it may be unrealistic as agents may encounter novel behaviors or environments after deployment. To
learn new behaviors and environments, continual learning might be necessary for post-deployment.

To learn new tasks, one may finetune the agents. But the finetuned agents would suffer from catas-
trophic forgetting that loses previously learned knowledge [13, 14]. To mitigate such forgetting, [15]
introduced a continual reinforcement learning framework that incrementally updates agents for new
tasks and evaluates their knowledge of current and past tasks. However, this operates in a simplified
task setup of [11], excluding natural language understanding and object localization.

Taking a step forward to bring the instruction following task to real-world scenarios, we propose two
continual learning scenarios for embodied agents: Behavior Incremental Learning (Behavior-IL)
and Environment Incremental Learning (Environment-IL) as depicted in Figure 1. In Behavior-IL,
the robot learns behaviors incrementally. For example, it may initially learn object movement and
subsequently acquire the skill of object heating. In Environment-IL, instead of being limited to
specific scenes such as bathrooms, the robot progressively learns to perform behaviors in diverse
environments such as kitchens and bedrooms.

∗Equal contribution. †Corresponding author. Most of the work is done while BK, JC are with Yonsei Univ.

8th Conference on Robot Learning (CoRL 2024), Munich, Germany.

https://github.com/snumprlab/cl-alfred

Behavior Incremental

Environment Incremental

Behavior 1: EXAMINE Behavior 2: HEAT Behavior N: MOVABLE

Environment 1: BEDROOMS Environment 2: BATHROOMS Environment M: KITCHENS

* Each denotes an expert demonstration.

* Each denotes an expert demonstration.

Online
Stream

Online
Stream

Online
Stream

Online
Stream

Online
Stream

Online
Stream

Figure 1: Proposed two incremental learning setups. In the ‘Behavior Incremental’ setup, the agent is ex-
pected to learn new behaviors while preserving previously learned knowledge. In the ‘Environment Incremen-
tal’ setup, the agent is expected to learn tasks in new environments with the preservation of previously learned
knowledge. Note that each image in the figure denotes an expert demonstration (i.e., a sequence of frames with
natural language instructions followed by a corresponding sequence of actions and object class labels).

In continual learning literature, significant progress [16, 17] has been made in addressing continual
learning by storing models learned in the previous task of extracting information about past data,
requiring a substantial storage cost [18]. For this, Buzzega et al. [19], Boschini et al. [20] propose
to store logits of past models for knowledge distillation, reducing storage costs while maintaining
learning efficacy. However, the stored logits may be the underfitted or insufficiently learned solution
as the model has not sufficiently trained in the early stage of learning, hindering the effective use of
prior knowledge. Moreover, this update often uses task boundary information that might not always
be available, especially in the cases of streamed data without explicit task boundaries [21, 22].

To develop continuously updating embodied agents, we propose to update logits by combining the
previously stored logits and the newly obtained ones in the moving average, call ‘Confidence-Aware
Moving Average’ (CAMA). In particular, we dynamically determine the moving average coefficients
based on the classification confidence scores inferred by the agents as indicators of the ‘quality’ of
the newly obtained logits (i.e., how much they contain accurate knowledge of the corresponding
tasks), as empirically observed that high confidence tends to have high accuracy in Figure 3.

Contributions. We summarize our contributions as follows:
• We propose behavior incremental (Behavior-IL) and environment incremental (Environment-IL)

setups for online continual learning for interactive instruction following agents.
• We propose Confidence-Aware Moving Average (CAMA) that dynamically determines coeffi-

cients for logit update to prevent logits from being outdated for effective knowledge distillation.
• Our proposed method outperforms comparable methods in most metrics with noticeable margins.

2 Related Work

Continual learning setups. Continual Learning (CL) are typically categorized into two main sce-
narios: offline [23, 24, 25, 26] and online [27, 19, 16, 22, 28], based on the frequency with which
the model accesses task data. In the offline setup, data from the current task are used for training
multiple times, but this often requires significant memory capacity to store all task data [29]. On

2

the other hand, online CL involves processing individual or small batches of samples, each of which
was used only once for training [27, 30]. Considering memory constraints and the continuous arrival
of limited data points over time in practical scenarios, we focus on the online CL setup.

Knowledge distillation in online continual learning. Continual learning has made significant
progress, employing methods such as replay-based [26, 31, 32, 33, 27], distillation [34, 19, 22],
and regularization [35, 24, 36]. In particular, distillation-based approaches [34, 22, 37] have been
extensively investigated to use prior knowledge, but often require substantial memory and additional
computation. Memory requirements make them unsuitable for settings with limited memory [18].

To address these issues, [19, 38, 20] propose using logits instead of storing previous models, saving
memory and inference overhead. However, the method of storing logits in memory without updating
may hinder the current model in distilling outdated past information from stored logits, since the
stored logits may represent incomplete learning for past tasks. To tackle this, a recent approach [20]
updates logits through weighted summation with logits maintained in memory and those from the
current model, preventing the previously stored logit from becoming outdated, as the model updates.

However, Boschini et al. [20] requires task boundary information during the training process for
logit update, making it unsuitable for setups where data arrive in a continuous stream without task
boundaries. In contrast, our approach updates logits based on the agent’s confidence without task
boundaries, making it suitable for more general setups where we do not have such information.

Lifelong learning for robotic agents. Going beyond relatively straightforward task setups such
as image classification, a substantial amount of literature has emerged to construct a more realis-
tic agent capable of incremental learning of novel tasks [39] in various aspects including learning
strategies (e.g., reinforcement learning [40, 41, 42], imitation learning [43, 44], etc.) and task for-
mulations (e.g., manipulation [45, 46], walking [47], etc.). Typically, most of them have focused on
relatively fine-grained manipulation tasks, while navigation [4, 2] has received less attention.

Concurrently, there is recent literature that delves into the dual aspect of navigation and interac-
tion [15, 48] in 3D interactive environments [49, 50] to perform more demanding tasks. In this con-
text, agents are required to become proficient in both navigating and interacting with task-related
objects. Here, the tasks in our proposed continual learning setups are similar to [15] that simplifies
the task setup of [11]. While [15] excludes natural language understanding and object localiza-
tion, we include them to train agents to complete the desired tasks in the challenging full-fledged
interactive instruction following setup, along with navigation and object interaction.

We review more relevant literature and provide extended related work in Sec. A for space’s sake.

3 CL-ALFRED: Continual Learning Setups for Embodied Agents

Continual learning enables agents to adapt to new behaviors and diverse environments after deploy-
ment, mitigating the risk of forgetting previously acquired knowledge. To foster active research
on mitigating catastrophic forgetting, recent literature [15] proposes a benchmark that continuously
learns novel household tasks, but lacks natural language understanding and object localization.

To comprehensively address the combined challenges of continuous learning of an agent with natural
language understanding and object localization, we use full-fledged interactive instruction following
tasks and propose two incremental learning setups, Behavior Incremental Learning (Behavior-IL)
and Environment Incremental Learning (Environment-IL). We outline our task formulation and
detail these incremental learning setups in the following sections.

3.1 Task Formulation

As the ALFRED dataset [11] requires a comprehensive understanding of natural language and visual
environments for intelligent agents, we build our continual benchmark on top of it. The agent is first
spawned at a random location in an environment and then given natural language instructions, l, that
describe how to accomplish a task. For each time step t, the agent takes as input visual observation

3

vt and predicts an action ya,t and a mask ym,t of an object class yc,t if object interaction is required.
Here, we learn a policy parameterized by θ, πθ : x −→ y, with input xt, i.e., (vt, l) and output yt,
i.e., (ya,t, ym,t). The goal for the policy πθ is to predict a sequence of actions and object masks to
complete the task. Kindly refer to Shridhar et al. [11] for more details.

Most previous methods [51, 52, 53, 54] for object localization utilize a two-stage approach, separat-
ing it into object class prediction and mask generation to enhance object localization. Since mask
generation is handled by separate mask generators, however, continual updates of these networks
are also required. Unfortunately, continuously updated instance segmentation models [55, 56] often
noticeably underperform jointly trained models. Here, we only address class prediction, assuming
the availability of object masks, leaving the continual updating of mask generators for future work.

3.2 Continual Learning Setups

We observe significant progress for agents that can perform desired tasks through language direc-
tives [4, 11, 12]. They are often confronted with new behaviors or environments after being deployed
and required to learn them while maintaining previously learned knowledge. However, prior meth-
ods either presuppose the availability of pre-collected datasets or utilize simplified task setups [15].

To address this limitation, we introduce two continual learning setups: 1) Behavior Incremen-
tal Learning (Behavior-IL) to incrementally learn what to do and 2) Environment Incremental
Learning (Environment-IL) to incrementally learn where to do, as in Figure 1. In addition, we
focus on online CL, which assumes a more realistic scenario where novel data are encountered in a
streaming manner [28, 22, 27] rather than assuming an offline CL in which novel data are provided
in chunks of tasks [26, 57]. More details about the continual setup can be found in Sec. B.1.

3.2.1 Behavior Incremental Learning

Behaviors described by instructions may exhibit considerable diversity as novel behaviors may arise
over time. To address this scenario, we propose the Behavior-IL setup that facilitates the agent’s
incremental learning of new behaviors while retaining the knowledge obtained from previous tasks.

Formally, for a set of behaviors, T , an agent sequentially receives Nj training episodes, {sτji }
Nj

i=1, for
each type of behavior, τj ∈ T . When receiving the final episode (i.e., sτjNj

) for the current behavior

type, τj , the agent starts to sequentially receive episodes, {sτj+1

i }Nj+1

i=1 , for the next behavior type,
τj+1. The episode stream ends with the last training episode, s

τ|T |
N|T |

, of the last task type, τ|T |.

Here, we adopt seven different types of behavior from [11]: EXAMINE, PICK&PLACE, HEAT,
COOL, CLEAN, PICK2&PLACE, and MOVABLE. To ensure the adaptability of agents and avoid fa-
voring particular behavior sequences, we train and evaluate agents using multiple randomly ordered
behavior sequences. Refer to Sec. B.2 for more details about the sequences.

3.2.2 Environment Incremental Learning

The Environment-IL setup allows agents to learn the environment incrementally. In the real world,
agents often need to perform actions not only in the environment in which they were initially trained
but also in new and different environments that are presented. For example, the agent may first learn
various actions in a kitchen and then subsequently learn the actions in a bathroom.

Formally, for a set of environments, E , an agent sequentially receives Mk training episodes,
{seki }

Mk
i=1, for each environment type, ek ∈ E . When receiving the final episode (i.e., sekMk

) for

the current environment type, ek, the agent begins to sequentially receive episodes, {sek+1

i }Mk+1

i=1 ,
for the next environment type, ek+1. This is repeated until it reaches the last environment type, e|E|.

In this setup, we adopt four different types of environments supported by [49]: KITCHENS, LIV-
INGROOMS, BEDROOMS, and BATHROOMS. Like the Behavior-IL setup, we conduct training and
evaluation using multiple sequences of randomly ordered environments. We also provide more de-
tails of the multiple environment sequences in Sec. B.3.

4

Confidence-Aware Coefficient Determination

0.9 0.8 0.9 0.70.9

0.7 0.8 0.7 0.70.9

0.8 0.7 0.6 0.80.9

mean

mean

mean

...

...

...

Current Logits Logit Update

Previous
Logits

Updated Logits

Classes Present in Current Batch:

0.9 0.6 0.7 0.80.8 mean...

C
on

fid
en

ce
 S

co
re

 Q
ue

ue
s

0.7

0.9

0.8

0.9

0.9

: Confidence Scores of
 Ground-Truth Labels Current

Logits

Figure 2: Proposed Confidence-Aware Moving Average (CAMA). ‘Current Logits’ denotes the model’s
logits obtained from the input samples from the current stream and episodic memory. ‘Previous Logits’ denotes
logits stored in episodic memory before an update. Qi denotes a queue that stores ground truth confidence
scores acquired from the current logits, y1, y2, ..., for the ith class. To obtain γi, we maintain the recent N
confidence scores for the ith class and calculate the mean value of the scores followed by a clip function.
Finally, we use all γi’s to class-wisely weight-sum previously stored logits (i.e., ’Previous Logits’) and newly
obtained logits from the current stream (i.e., ‘Current Logits’).

However, we observe an imbalance in the training and evaluation episodes between different types
of environment [11], where a majority of them originate from a specific environment type in many
instances. The imbalance can potentially lead to biased learning towards the dominant (i.e., majority)
environment type [58, 59]. For this, we balance them by subsampling the training and evaluation
episodes for each environment to match the number of episodes across environment types equally.

4 Approach

0K 2K 4K 6K 8K 10K 12K
Received Samples

0.0
0.2
0.4
0.6
0.8
1.0

Co
nf

id
en

ce

0.0
0.2
0.4
0.6
0.8
1.0

Ac
cu

ra
cy

Confidence
Accuracy

Figure 3: Confidence and accuracy of logits used
for logit update in CAMA. ‘Accuracy’ denotes the
mean of the frame-wise accuracies measured from
the newly obtained logits (here, z′a) in Equation 1.
‘Confidence’ denotes the dynamically determined
coefficients (here, γa) for the update in Equation 2.

To mitigate catastrophic forgetting, recent ap-
proaches [34, 22, 37] use knowledge distillation
with the trained model until past tasks, but this of-
ten entails significant memory [18] and computa-
tional overhead caused by additional model infer-
ence [60]. Due to the limitations in memory and
computation on edge devices [61], logit distilla-
tion methods [19, 20] have been proposed as al-
ternatives to those that store entire models for dis-
tillation [34, 22], offering improved memory and
computation efficiency. Despite such improved ef-
ficiency, some logit distillation methods [19] often
face outdated logits, as memory-stored logits are not updated to preserve previous task information.

To address this issue, a recent approach [20] attempts to partially update logits stored in the past us-
ing the current model. It uses task boundary information (e.g., input’s task identity) during training,
but it may not always be available, especially in task-free CL setups including our proposed ones.
Towards a general logit-update framework devoid of such information, we update the stored log-
its using the agent’s confidence scores indicating how the newly obtained logits for update contain
accurate knowledge of the corresponding tasks, as observed in Figure 3.

4.1 Confidence-Aware Moving Average

As illustrated in Figure 2, the overall process of Confidence-Aware Moving Average (CAMA) can
be summarized as follows: Initially, exploiting the model’s confidence scores of ground-truth labels,
we evaluate the extent to which the model has acquired proficiency in the current samples. Subse-
quently, during the computation of the updated logits based on the previous and current logits, we
allocate a higher weight to the current logits when exhibiting higher confidence scores, and con-
versely, assign a higher weight to the previous logits demonstrating lower confidence scores. For
better understanding, we outline the high-level flow of our CAMA in Algorithm 1 in the appendix.

5

Following the common practice [24, 31, 19], we construct an input batch, [x;x′], by com-
bining data from both the training data stream (x, ya, yc) ∼ D and the episodic memory
(x′, y′a, y

′
c, z

′
old,a, z

′
old,c) ∼ M, where each a ∈ A and c ∈ C indicates an action and object class

label from the action and object class sets, A and C, present in the input batch, [x;x′]. Here, x rep-
resents the input (i.e., images and language directives), ya and yc denote the corresponding action
and object class labels, and z′old,a and z′old,c refers to the corresponding stored logits. za, zc, z′a, and
z′c denote the current model’s logits for the input batch.

To prevent the logits maintained in the episodic memory from becoming outdated, we obtain the
updated logits, z′new,a and z′new,c, by weighted-summing z′old,a and z′old,c with z′a and z′c using
coefficient vectors, γa and γc, using Hadamard product, denoted by ⊙, as in Equation 1:

z′new,a = (1− γa)⊙ z′old,a + γa ⊙ z′a, z′new,c = (1− γc)⊙ z′new,c + γc ⊙ z′c. (1)

To obtain γa and γc, we first maintain the most recent N confidence scores for each action and
object class label for x. Then, to approximate the agent’s proficiency in learning tasks over time, we
compute the average of the scores associated with each action (i) and object class (j) label, denoted
by s̄ai and s̄cj . We then set each element of γa and γc, denoted by γa,i and γc,j , to s̄ai and s̄cj followed
by a CLIP function as in Equation 2:

γa,i = αaCLIP
(
s̄ai − |A|−1, 0, 1

)
, γc,j = αcCLIP

(
s̄cj − |C|−1, 0, 1

)
, (2)

where CLIP(x,min,max) denotes the clip function that limits the value of x from min to max.
Here, the constants αa < 1 and αc < 1 are introduced to prevent γa,i and γc,j from reaching a value
of 1 as this indicates complete replacement of the prior logits with the current logits, which implies
that the updated logits would entirely forget the previously learned knowledge. The inclusion of
these constants ensures that some information from the past is retained and not entirely overridden
by the current logits during the update process. In addition, we subtract |A|−1 and |C|−1 enhances
the effective utilization of confidence scores in comparison to a ‘random’ selection, which would
otherwise be realized by a uniform distribution [27].

4.2 Model Training

Given expert demonstrations, x as input, we train our agent, πθ, by minimizing the objective below:
min
θ

E(x,y)∼D[L(πθ(x), y)] + E(x,y)∼M[L(πθ(x), y)] + α E(x,z)∼M[||z − πθ(x)||22], (3)

where y denotes the ground-truth labels corresponding to x and z the logits maintained in the
episodic memory. We provide more details of the training loss, L, in Sec. D.3 in the appendix.

5 Experiments

Evaluation metrics. For evaluation of task completion ability, we follow the same evaluation pro-
tocol of [11]. The primary metric is the success rate (SR) which measures the ratio of the succeeded
episodes among the total ones. The second metric is the goal-condition success rate (GC) which
measures the ratio of the satisfied goal conditions among the total ones. Furthermore, we evaluated
all agents in two splits of environments: seen and unseen environments which are/are not used to
train agents. We provide more details of the evaluation protocol in Sec. D.1.

To evaluate the last and intermediate performance of continual learning agents, we measure two vari-
ations of a metric, A: Alast and Aavg . Alast (here, SRlast and GClast) indicates the metric achieved
by the agent that finishes its training for the final task. Aavg (here, SRavg and GCavg) indicates the
average of the metrics achieved by the agents that finish their training for each incremental task.

All the models are trained sequentially over a sequence of behaviors (Behavior-IL) and environments
(Environment-IL) and then evaluated over the behaviors and environments that the models have
learned so far. For evaluation, we use episodes different from those used for training. The same
trained models are evaluated in both seen and unseen environments. For seen and unseen, we denote
by seen the evaluation with the episodes generated from scenes used in training, while we denote by
unseen the evaluation with the episodes generated from scenes not used in training.

6

Model

Validation Seen
Behavior-IL Environment-IL

SRlast ↑ GClast ↑ SRavg ↑ GCavg ↑ SRlast ↑ GClast ↑ SRavg ↑ GCavg ↑
Finetuning 9.51± 1.09 20.39± 0.61 17.07± 0.86 26.11± 0.95 8.72± 2.12 15.56± 1.29 16.25± 3.95 21.40± 4.65

EWC++ 20.37± 5.19 29.32± 5.92 22.21± 4.34 30.97± 4.26 26.79± 2.24 36.79± 1.83 31.01± 2.76 40.56± 2.22
ER 26.71± 1.49 36.59± 1.36 27.67± 2.08 36.20± 1.96 30.28± 1.07 39.15± 0.83 34.72± 1.56 44.00± 1.52
MIR 30.27± 1.33 40.14± 2.00 28.12± 1.78 36.76± 1.73 27.50± 1.48 36.31± 1.43 31.81± 0.81 40.94± 0.95
CLIB 23.85± 2.02 34.25± 1.81 23.94± 2.36 32.65± 2.22 25.47± 1.42 34.63± 1.55 32.51± 2.40 41.25± 2.34
DER++ 29.15± 1.29 39.39± 1.16 27.49± 2.27 36.10± 1.92 28.25± 1.18 36.18± 0.60 28.68± 2.54 38.01± 3.16
X-DER 28.76± 1.25 38.45± 1.18 27.21± 2.53 35.88± 2.22 28.30± 0.87 37.02± 0.61 29.32± 2.36 39.13± 2.59

CAMA w/o D.C. 30.54± 1.27 39.92± 1.50 29.89± 2.32 38.16± 2.71 31.55± 0.87 39.29± 1.03 34.49± 2.29 43.28± 2.17
CAMA (Ours) 30.71± 0.78 40.85± 0.73 29.67± 2.66 38.17± 2.34 29.48± 0.27 38.13± 0.85 35.09± 1.92 44.02± 2.21
Joint 60.47± 0.33 65.77± 0.78 − − 56.25± 0.89 62.13± 0.84 − −

Table 1: Comparison with state-of-the-art methods (validation seen). The highest value per metric is in
bold. We report the averages and standard deviations of multiple runs for random seeds as in Sec. 3.2.

Model

Validation Unseen
Behavior-IL Environment-IL

SRlast ↑ GClast ↑ SRavg ↑ GCavg ↑ SRlast ↑ GClast ↑ SRavg ↑ GCavg ↑
Finetuning 1.18± 1.09 12.09± 1.65 3.03± 1.29 13.95± 1.01 2.01± 0.86 11.20± 1.92 2.90± 2.16 13.53± 4.33

EWC++ 8.50± 2.15 21.63± 3.60 8.33± 1.33 20.71± 1.99 11.61± 1.29 28.47± 0.83 12.37± 1.30 29.90± 1.30
ER 9.43± 1.25 24.22± 1.54 9.47± 1.51 22.79± 1.39 11.44± 1.36 29.11± 0.96 14.25± 1.47 31.98± 1.64
MIR 11.01± 1.16 25.31± 1.14 10.88± 1.51 24.20± 1.45 12.01± 0.61 29.67± 0.47 12.58± 0.80 29.11± 1.26
CLIB 8.26± 1.03 22.00± 1.31 8.56± 0.66 21.03± 1.15 10.46± 1.18 27.40± 0.78 11.95± 1.51 29.93± 2.05
DER++ 13.16± 5.56 28.70± 5.63 10.60± 4.04 24.94± 2.69 10.29± 1.05 26.90± 1.31 10.25± 1.72 26.83± 1.97
X-DER 12.59± 1.92 28.10± 2.05 12.04± 1.56 25.50± 1.48 10.75± 1.15 28.37± 1.05 11.14± 1.38 28.56± 1.44

CAMA w/o D.C. 14.06± 1.20 28.33± 1.58 12.52± 1.46 26.02± 1.38 13.57± 1.25 29.54± 1.41 12.78± 0.57 29.76± 0.84
CAMA (Ours) 13.64± 0.94 28.75± 0.92 14.19± 1.38 27.30± 1.38 14.60± 0.43 30.99± 0.75 15.67± 0.77 33.40± 1.45
Joint 24.60± 0.96 38.24± 1.55 − − 19.73± 2.31 39.02± 0.53 − −

Table 2: Comparison with state-of-the-art methods (validation unseen). The highest value per metric is in
bold. We report averages and standard deviations of multiple runs for random seeds as in Sec. 3.2.

Baselines. We compare our CAMA with competitive prior arts in continual learning literature:
CLIB [27], DER++ [19], ER [31], MIR [28], EWC [24], and X-DER [20]. In addition, we also
compare our CAMA with two models: ‘Joint’ and ‘Finetuning’. ‘Joint’ denotes that the agent is
trained with all task data jointly, which works as an upper bound. ‘Finetuning’ denotes that the
agent is fine-tuned for the new tasks or scene types, which can serve as one of the trivial solutions
for continual setups. We provide further explanation for each baseline in Sec. D.2. We further detail
the model architecture and training used for the methods above in Sec. D.3 for space’s sake.

Implementation details. It is a common practice in continual learning literature [33, 27, 22] to set
the size of episodic memory to less than 5%. To align with previous works in continual learning, we
set the size of the episodic memory to M = 500 for expert demonstrations, which is approximately
2.38% of the training episodes in the ALFRED benchmark [11]. For our CAMA, we empirically set
αa = 0.99 and αc = 0.99. More implementation details such as hyperparameters are in Sec. D.4.

5.1 Comparison with State of the Art

We present the quantitative results of our CAMA in Table 1-2. As mentioned in Sec. 3.2, we train
and evaluate our CAMA and baselines for three random seeds and report the results with their
average and standard deviation to avoid favoring particular behavior and environment sequences.
We provide quantitative analyses in various aspects as follows.

Joint training vs. Finetuning. Before investigating the effectiveness of our CAMA, we first in-
vestigate how challenging the proposed Behavior-IL and Environment-IL setups are. We observe
significant performance drops in ‘Finetuning’ compared to ‘Joint’ with 51.0% and 47.5% relative
drops. This implies that simply finetuning agents to novel behaviors and environments cannot effec-
tively address the forgetting caused by distribution shifts between behaviors and environments.

Ours vs. Regularization-based model. We observe that our CAMA achieves better performance
than the regularization-based approach (i.e., EWC++) with noticeable margins in both seen and
unseen environments for all metrics and setups, indicating that regularizing changes in importance
parameters may not effectively prevent forgetting than distilling knowledge from updated logits.

7

Ours vs. Rehearsal-based models. We observe that our CAMA outperforms all rehearsal-based
approaches (i.e., ER, MIR, and CLIB) for all metrics in both seen and unseen environments in
both Behavior-IL and Environment-IL setups. We believe that this implies that solely depending on
sample replay amidst rapid data distribution shifts can result in insufficient task forgetting mitigation
and hinder the agent’s ability to adapt to novel tasks, ultimately impeding effective task completion.

Ours vs. Distillation-based models. We compare our CAMA with the distillation-based ap-
proaches (i.e., DER and X-DER) to investigate the effectiveness of our logit-update approach. First,
we observe noticeable performance drops in DER, which does not update logits, compared to our
CAMA for all metrics in seen and unseen environments in both Behavior-IL and Environment-IL
setups, which highlights the importance of updating logits to prevent them from being outdated.

In addition, we observe that our CAMA outperforms X-DER, which partially updates logits only
for novel classes, with noticeable margins for all metrics and environments in both the Behavior-IL
and Environment-IL setups, highlighting the efficacy of our CAMA. We note that while X-DER
updates logits based on task boundary information during training, our CAMA does not assume the
availability of such information (i.e., task-free), which highlights the generality of our CAMA.

5.2 The Effectiveness of Dynamically Determined Coefficients

We investigate the effect of dynamically determined coefficients of our CAMA by fixing them with
a constant value and provide the results (‘CAMA’ vs. ‘CAMA w/o D.C.’ in Table 1-2). ‘CAMA w/o
D.C.’ assumes that the agent is always 100% confident in what it learns. Consequently, we directly
set γa and γc to αa and αc by omitting the process of dynamically determined coefficients.

We observe that the ablation of dynamically determined coefficients consistently yields performance
drops in all metrics in seen and unseen environments in both Behavior-IL and Environment-IL se-
tups, indicating the importance of the process of finding such coefficients. This could be attributed
to the fact that while logit updating with a constant coefficient helps mitigate the obsolescence of the
logits to some extent, it also combines them with logits from the current model that lacks sufficient
training for novel tasks, particularly during the initial phase of learning these tasks. Consequently,
this can lead to performance degradation due to incomplete knowledge of these new tasks.

5.3 Qualitative Analysis

We provide qualitative examples of CAMA in the Behavior-IL and Environment-IL setups by com-
parison with the naïve (i.e., Finetuning) and prior best-performing (DER++) methods in Sec. D.5.

6 Conclusion

We propose two continual learning setups that learn new behaviors (Behavior Incremental Learning,
Behavior-IL) and environments (Environment Incremental Learning, Environment-IL) continually.
Prior methods employ the storage of model logits from previous tasks but they are updated either
only once or upon obtaining new logits, potentially resulting in learning with outdated data or uti-
lizing logits from a model that has incompletely learned the new tasks.

To effectively update the logits, we propose Confidence-Aware Moving Average (CAMA), a simple
yet effective approach that dynamically determines moving average coefficients based on the agent’s
confidence scores. We observe that the CAMA outperforms all prior arts by noticeable margins.

Limitation and future work. While the disjoint setup operates under the assumption that tasks
in streaming data are non-overlapping [62], posing a stringent test for catastrophic forgetting, such
non-overlapping scenarios might not always be the case in real-world scenarios. To address this
aspect, extending our proposed setups to feature overlapped tasks in streaming data, such as blurry
setups [32, 33] or Gaussian scheduled regimes [21, 63], are a promising avenue for future research.

8

Ethics Statement

This work introduces continual learning setups for interactive instruction following agents and a
logit-update approach to enhance the effectiveness of knowledge distillation. While the authors do
not aim for this, the increasing adoption of deep learning models in real-world contexts with stream-
ing data could potentially raise concerns such as privacy and model robustness. There is a possibility
of these deployed deep learning models inadvertently introducing biases or discrimination, as unre-
solved issues like model bias persist within deep learning. We are committed to implementing all
feasible precautions to avert such consequences, as they are unequivocally contrary to our intentions.

Reproducibility Statement

We take reproducibility in deep learning very seriously and highlight some of the contents of the
manuscript that might help to reproduce our work. We release the data splits of the proposed bench-
marks in Sec. 3, our implementation of the proposed method in Sec. 4, and the baselines used in our
experiments in Sec. 5 in https://github.com/snumprlab/cl-alfred.

Acknowledgment

This work was partly supported by the NRF grant (No.2022R1A2C4002300, 15%) and IITP grants
(No.2020-0-01361 (10%, Yonsei AI), No.2021-0-01343 (5%, SNU AI), No.2022-0-00077 (10%),
No.2022-0-00113 (20%), No.2022-0-00959 (15%), No.2022-0-00871 (15%), No.2021-0-02068
(5%, AI Innov. Hub), No.2022-0-00951 (5%)) funded by the Korea government (MSIT).

References
[1] M. Savva, A. Kadian, O. Maksymets, Y. Zhao, E. Wijmans, B. Jain, J. Straub, J. Liu, V. Koltun,

J. Malik, D. Parikh, and D. Batra. Habitat: A Platform for Embodied AI Research. In ICCV,
2019.

[2] M. Deitke, W. Han, A. Herrasti, A. Kembhavi, E. Kolve, R. Mottaghi, J. Salvador, D. Schwenk,
E. VanderBilt, M. Wallingford, L. Weihs, M. Yatskar, and A. Farhadi. Robothor: An open
simulation-to-real embodied ai platform. In CVPR, 2020.

[3] P. Anderson, Q. Wu, D. Teney, J. Bruce, M. Johnson, N. Sünderhauf, I. Reid, S. Gould, and
A. van den Hengel. Vision-and-language navigation: Interpreting visually-grounded naviga-
tion instructions in real environments. In CVPR, 2018.

[4] J. Krantz, E. Wijmans, A. Majumdar, D. Batra, and S. Lee. Beyond the nav-graph: Vision-
and-language navigation in continuous environments. In ECCV, 2020.

[5] Y. Zhu, D. Gordon, E. Kolve, D. Fox, L. Fei-Fei, A. Gupta, R. Mottaghi, and A. Farhadi. Visual
semantic planning using deep successor representations. In ICCV, 2017.

[6] D. Misra, J. Langford, and Y. Artzi. Mapping instructions and visual observations to actions
with reinforcement learning. In EMNLP, 2017.

[7] L. Weihs, M. Deitke, A. Kembhavi, and R. Mottaghi. Visual room rearrangement. In CVPR,
2021.

[8] K. Ehsani, W. Han, A. Herrasti, E. VanderBilt, L. Weihs, E. Kolve, A. Kembhavi, and R. Mot-
taghi. Manipulathor: A framework for visual object manipulation. In CVPR, 2021.

[9] A. Das, S. Datta, G. Gkioxari, S. Lee, D. Parikh, and D. Batra. Embodied question answering.
In CVPR, 2018.

9

https://github.com/snumprlab/cl-alfred

[10] D. Gordon, A. Kembhavi, M. Rastegari, J. Redmon, D. Fox, and A. Farhadi. Iqa: Visual
question answering in interactive environments. In CVPR, 2018.

[11] M. Shridhar, J. Thomason, D. Gordon, Y. Bisk, W. Han, R. Mottaghi, L. Zettlemoyer, and
D. Fox. Alfred: A benchmark for interpreting grounded instructions for everyday tasks. In
CVPR, 2020.

[12] A. Padmakumar, J. Thomason, A. Shrivastava, P. Lange, A. Narayan-Chen, S. Gella, R. Pira-
muthu, G. Tur, and D. Hakkani-Tur. Teach: Task-driven embodied agents that chat. In AAAI,
2022.

[13] M. McCloskey and N. J. Cohen. Catastrophic interference in connectionist networks: The
sequential learning problem. In Psychology of learning and motivation, 1989.

[14] R. Ratcliff. Connectionist models of recognition memory: constraints imposed by learning and
forgetting functions. In Psychological review, 1990.

[15] S. Powers, E. Xing, E. Kolve, R. Mottaghi, and A. Gupta. Cora: Benchmarks, baselines, and
metrics as a platform for continual reinforcement learning agents. In CoLLAs, 2022.

[16] Z. Mai, R. Li, J. Jeong, D. Quispe, H. Kim, and S. Sanner. Online continual learning in image
classification: An empirical survey. In Neurocomputing, 2022.

[17] M. Biesialska, K. Biesialska, and M. R. Costa-Jussa. Continual lifelong learning in natural
language processing: A survey. arXiv:2012.09823, 2020.

[18] D.-W. Zhou, Q.-W. Wang, H.-J. Ye, and D.-C. Zhan. A model or 603 exemplars: Towards
memory-efficient class-incremental learning. arXiv:2205.13218, 2022.

[19] P. Buzzega, M. Boschini, A. Porrello, D. Abati, and S. Calderara. Dark experience for general
continual learning: a strong, simple baseline. In NeurIPS, 2020.

[20] M. Boschini, L. Bonicelli, P. Buzzega, A. Porrello, and S. Calderara. Class-incremental con-
tinual learning into the extended der-verse. In IEEE TPAMI, 2022.

[21] M. Shanahan, C. Kaplanis, and J. Mitrović. Encoders and ensembles for task-free continual
learning. arXiv:2105.13327, 2021.

[22] H. Koh, M. Seo, J. Bang, H. Song, D. Hong, S. Park, J.-W. Ha, and J. Choi. Online boundary-
free continual learning by scheduled data prior. In ICLR, 2023.

[23] S.-A. Rebuffi, A. Kolesnikov, G. Sperl, and C. H. Lampert. icarl: Incremental classifier and
representation learning. In CVPR, 2017.

[24] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins, A. A. Rusu, K. Milan,
J. Quan, T. Ramalho, A. Grabska-Barwinska, D. Hassabis, C. Clopath, D. Kumaran, and
R. Hadsell. Overcoming catastrophic forgetting in neural networks. In PNAS, 2017.

[25] A. Chaudhry, P. K. Dokania, T. Ajanthan, and P. H. Torr. Riemannian walk for incremental
learning: Understanding forgetting and intransigence. In ECCV, 2018.

[26] Y. Wu, Y. Chen, L. Wang, Y. Ye, Z. Liu, Y. Guo, and Y. Fu. Large scale incremental learning.
In CVPR, 2019.

[27] H. Koh, D. Kim, J.-W. Ha, and J. Choi. Online continual learning on class incremental blurry
task configuration with anytime inference. In ICLR, 2022.

[28] R. Aljundi, L. Caccia, E. Belilovsky, M. Caccia, M. Lin, L. Charlin, and T. Tuytelaars. Online
continual learning with maximally interfered retrieval. In NeurIPS, 2019.

10

[29] T. L. Hayes and C. Kanan. Online continual learning for embedded devices. arXiv:2203.10681,
2022.

[30] R. Aljundi, M. Lin, B. Goujaud, and Y. Bengio. Gradient based sample selection for online
continual learning. In NeurIPS, 2019.

[31] D. Rolnick, A. Ahuja, J. Schwarz, T. Lillicrap, and G. Wayne. Experience replay for continual
learning. In NeurIPS, 2019.

[32] A. Prabhu, P. H. Torr, and P. K. Dokania. Gdumb: A simple approach that questions our
progress in continual learning. In ECCV, 2020.

[33] J. Bang, H. Kim, Y. Yoo, J.-W. Ha, and J. Choi. Rainbow memory: Continual learning with a
memory of diverse samples. In CVPR, 2021.

[34] Z. Li and D. Hoiem. Learning without forgetting. In IEEE TPAMI, 2017.

[35] F. Zenke, B. Poole, and S. Ganguli. Continual learning through synaptic intelligence. In ICML,
2017.

[36] T. Lesort, A. Stoian, and D. Filliat. Regularization shortcomings for continual learning.
arXiv:1912.03049, 2019.

[37] M. Boschini, L. Bonicelli, A. Porrello, G. Bellitto, M. Pennisi, S. Palazzo, C. Spampinato, and
S. Calderara. Transfer without forgetting. In ECCV, 2022.

[38] U. Michieli and P. Zanuttigh. Knowledge distillation for incremental learning in semantic
segmentation. In CVIU, 2021.

[39] T. Lesort, V. Lomonaco, A. Stoian, D. Maltoni, D. Filliat, and N. Díaz-Rodríguez. Continual
learning for robotics: Definition, framework, learning strategies, opportunities and challenges.
In Information fusion, 2020.

[40] K. Khetarpal, S. Sodhani, S. Chandar, and D. Precup. Environments for lifelong reinforcement
learning. arXiv:1811.10732, 2018.

[41] M. Wołczyk, M. Zając, R. Pascanu, Ł. Kuciński, and P. Miłoś. Continual world: A robotic
benchmark for continual reinforcement learning. In NeurIPS, 2021.

[42] A. Xie and C. Finn. Lifelong robotic reinforcement learning by retaining experiences. In
CoLLAs, 2022.

[43] J. Mendez, S. Shivkumar, and E. Eaton. Lifelong inverse reinforcement learning. In NeurIPS,
2018.

[44] C. Gao, H. Gao, S. Guo, T. Zhang, and F. Chen. Cril: Continual robot imitation learning via
generative and prediction model. In IROS, 2021.

[45] F. Yang, C. Yang, H. Liu, and F. Sun. Evaluations of the gap between supervised and rein-
forcement lifelong learning on robotic manipulation tasks. In CoRL, 2022.

[46] B. Liu, Y. Zhu, C. Gao, Y. Feng, Q. Liu, Y. Zhu, and P. Stone. Libero: Benchmarking knowl-
edge transfer for lifelong robot learning. arXiv:2306.03310, 2023.

[47] W. Zhou, S. Bohez, J. Humplik, N. Heess, A. Abdolmaleki, D. Rao, M. Wulfmeier, and
T. Haarnoja. Forgetting and imbalance in robot lifelong learning with off-policy data. In
CoLLAs, 2022.

[48] G. Wang, Y. Xie, Y. Jiang, A. Mandlekar, C. Xiao, Y. Zhu, L. Fan, and A. Anandkumar.
Voyager: An open-ended embodied agent with large language models. arXiv:2305.16291,
2023.

11

[49] E. Kolve, R. Mottaghi, W. Han, E. VanderBilt, L. Weihs, A. Herrasti, D. Gordon, Y. Zhu,
A. Gupta, and A. Farhadi. Ai2-thor: An interactive 3d environment for visual ai.
arXiv:1712.05474, 2017.

[50] L. Fan, G. Wang, Y. Jiang, A. Mandlekar, Y. Yang, H. Zhu, A. Tang, D.-A. Huang, Y. Zhu,
and A. Anandkumar. Minedojo: Building open-ended embodied agents with internet-scale
knowledge. In NeurIPS, 2022.

[51] K. P. Singh, S. Bhambri, B. Kim, R. Mottaghi, and J. Choi. Factorizing perception and policy
for interactive instruction following. In ICCV, 2021.

[52] A. Pashevich, C. Schmid, and C. Sun. Episodic transformer for vision-and-language naviga-
tion. In ICCV, 2021.

[53] S. Y. Min, D. S. Chaplot, P. Ravikumar, Y. Bisk, and R. Salakhutdinov. Film: Following
instructions in language with modular methods. In ICLR, 2022.

[54] B. Kim, J. Kim, Y. Kim, C. Min, and J. Choi. Context-aware planning and environment-aware
memory for instruction following embodied agents. In ICCV, 2023.

[55] K. Joseph, J. Rajasegaran, S. Khan, F. S. Khan, and V. N. Balasubramanian. Incremental object
detection via meta-learning. In IEEE TPAMI, 2021.

[56] F. Cermelli, A. Geraci, D. Fontanel, and B. Caputo. Modeling missing annotations for incre-
mental learning in object detection. In CVPR, 2022.

[57] G. Saha, I. Garg, and K. Roy. Gradient projection memory for continual learning.
arXiv:2103.09762, 2021.

[58] T. Chakraborty and A. K. Chakraborty. Superensemble classifier for improving predictions
in imbalanced datasets. In Communications in Statistics: Case Studies, Data Analysis and
Applications, 2020.

[59] B. Zhao, C. Chen, Q. Ju, and S. Xia. Energy aligning for biased models. arXiv:2106.03343,
2021.

[60] A. Prabhu, H. A. Al Kader Hammoud, P. K. Dokania, P. H. Torr, S.-N. Lim, B. Ghanem, and
A. Bibi. Computationally budgeted continual learning: What does matter? In CVPR, 2023.

[61] S. Lee, M. Weerakoon, J. Choi, M. Zhang, D. Wang, and M. Jeon. Carm: hierarchical episodic
memory for continual learning. In DAC, 2022.

[62] G. I. Parisi, R. Kemker, J. L. Part, C. Kanan, and S. Wermter. Continual lifelong learning with
neural networks: A review. In Neural networks, 2019.

[63] Z. Wang, Z. Zhang, C.-Y. Lee, H. Zhang, R. Sun, X. Ren, G. Su, V. Perot, J. Dy, and T. Pfister.
Learning to prompt for continual learning. In CVPR, 2022.

[64] R. Aljundi, F. Babiloni, M. Elhoseiny, M. Rohrbach, and T. Tuytelaars. Memory aware
synapses: Learning what (not) to forget. In ECCV, 2018.

[65] D. Lopez-Paz and M. Ranzato. Gradient episodic memory for continual learning. In NeurIPS,
2017.

[66] M. S. Hossain, P. Saha, T. F. Chowdhury, S. Rahman, F. Rahman, and N. Mohammed. Re-
thinking task-incremental learning baselines. In ICPR, 2022.

[67] F. Ye and A. G. Bors. Task-free continual learning via online discrepancy distance learning. In
NeurIPS, 2022.

12

[68] R. Aljundi, K. Kelchtermans, and T. Tuytelaars. Task-free continual learning.
arXiv:1812.03596, 2018.

[69] H. Zhao, X. Qin, S. Su, Y. Fu, Z. Lin, and X. Li. When video classification meets incremental
classes. In ACM MM, 2021.

[70] A. Villa, K. Alhamoud, V. Escorcia, F. Caba, J. L. Alcázar, and B. Ghanem. vclimb: A novel
video class incremental learning benchmark. In CVPR, 2022.

[71] J. Park, M. Kang, and B. Han. Class-incremental learning for action recognition in videos. In
ICCV, 2021.

[72] V. Jain, G. Magalhaes, A. Ku, A. Vaswani, E. Ie, and J. Baldridge. Stay on the path: Instruction
fidelity in vision-and-language navigation. In ACL, 2019.

[73] X. Gao, Q. Gao, R. Gong, K. Lin, G. Thattai, and G. S. Sukhatme. Dialfred: Dialogue-enabled
agents for embodied instruction following. In RA-L, 2022.

[74] D. Shim, Z. Mai, J. Jeong, S. Sanner, H. Kim, and J. Jang. Online class-incremental continual
learning with adversarial shapley value. In AAAI, 2021.

[75] B. Kim, S. Bhambri, K. P. Singh, R. Mottaghi, and J. Choi. Agent with the big picture:
Perceiving surroundings for interactive instruction following. In Embodied AI Workshop @
CVPR, 2021.

[76] V.-Q. Nguyen, M. Suganuma, and T. Okatani. Look wide and interpret twice: Improving
performance on interactive instruction-following tasks. In IJCAI, 2021.

[77] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton. A simple framework for contrastive learning
of visual representations. In ICML, 2020.

[78] C.-Y. Ma, J. Lu, Z. Wu, G. AlRegib, Z. Kira, R. Socher, and C. Xiong. Self-monitoring
navigation agent via auxiliary progress estimation. In ICLR, 2019.

[79] S. Bhambri, B. Kim, and J. Choi. Multi-level compositional reasoning for interactive instruc-
tion following. In AAAI, 2023.

[80] E. D. Cubuk, B. Zoph, D. Mane, V. Vasudevan, and Q. V. Le. Autoaugment: Learning aug-
mentation policies from data. In CVPR, 2019.

[81] Z. Li and S. Arora. An exponential learning rate schedule for deep learning. arXiv:1910.07454,
2019.

[82] I. Loshchilov and F. Hutter. Sgdr: Stochastic gradient descent with warm restarts.
arXiv:1608.03983, 2016.

[83] X. Liu, Y.-S. Hu, X.-S. Cao, A. D. Bagdanov, K. Li, and M.-M. Cheng. Long-tailed class
incremental learning. In ECCV, 2022.

[84] J. He, L. Lin, J. Ma, H. A. Eicher-Miller, and F. Zhu. Long-tailed continual learning for visual
food recognition. arXiv preprint arXiv:2307.00183, 2023.

13

Appendix

A Extended Related Work

Continual learning setup. We can categorize continual learning setups into Task Incremental
(task-IL) and Class Incremental (class-IL) depending on whether task ID is given during infer-
ence. In task-IL, task-ID is provided during inference [64, 65, 66], while in class-IL, task ID is
not given [27, 19, 22, 33]. As task-ID is not provided during inference in the real world, class-IL is
closer to the real setup and is more challenging because it requires classification across all classes.
We focused on class-IL to deal with more realistic situations.

Task-free continual learning setups. Approaches to continual learning can be categorized into
task-free methods [28, 22, 67, 27] and task-aware methods [24, 34, 26, 20] based on the use of task
boundary information during training [68]. Several task-aware methods [34, 26] that exploit task
boundary information during training distill the knowledge of past tasks from the previously learned
model saved in memory. However, in real-world scenarios, it is often impractical to know the task
identity of streamed input data [68]. Thus, even if tasks are discretely defined (e.g., blurry [32, 33],
disjoint [62]), the task-free setup indicates no task-specific information or identifier during training.

Continual learning methods. As the need for continual learning is increasingly highlighted
across various fields, researchers have proposed a wide array of continual learning methods to pre-
vent catastrophic forgetting. (1) Replay-Based Methods [32, 27, 33, 26, 31] store some stream data
in episodic memory and replaying memory data during the future learning process to prevent for-
getting about previous tasks. (2) Distillation-Based Methods [19, 22, 34] retain knowledge about
past data by storing logits [19] or models [22, 34] to distill knowledge. (3) Regularization-Based
Method [35, 24, 36] prevents the overwriting of important parameters by imposing a penalty on
changes to these crucial parameters.

Recently, continual learning has also been actively investigated in more challenging task setups such
as video domains [69, 70, 71]. The focus of their work is generally on classification problems such
as action recognition in a video by observing full video frames as given. In contrast, rather than
receiving predetermined frames at once, the next observations (frames) of agents are determined by
the actions that the agents take, which then require the agents to plan subsequent actions to complete
tasks based on the next observations.

Embodied AI. Embodied AI (EAI) has garnered substantial attention, and notable advancements
have been made in various tasks [3, 4, 72, 1, 2, 7, 8, 11, 12, 73]. For instance, visual navigation tasks
necessitate that the agent use visual observation to reach designated locations [1] or objects [1, 2].
Meanwhile, vision-language navigation (VLN) [3, 72, 4] augments visual observation with natural
language descriptions, enabling the agent to plan a sequence of actions based on a comprehensive
understanding of multiple modalities to successfully reach the target locations.

Furthermore, the scope of EAI tasks has expanded through the inclusion of object interaction. [7]
necessitates the agent to relocate objects to their original state by manipulating them, while [8]
requires the agent to move objects to designated locations using six degrees of freedom (6-DoF) ma-
nipulation. [11] presents natural language descriptions, which the agent must comprehend to plan a
sequence of actions and utilize predictive 2D object classes to locate objects for interaction. Mean-
while, [12, 73] provide natural language dialogues, in which the agent must engage in reasoning to
determine the appropriate course of action and complete the tasks at hand.

However, the agents evaluated in those benchmarks are typically trained using pre-existing datasets.
Given that the data collection process can be both expensive and time-consuming, it may not always
be feasible to pre-collect the requisite dataset, implying the need for continual learning for the agents.

14

B Additional CL-ALFRED Benchmark Details

B.1 Continual Learning Setups

In alignment with the common practice in the prior arts [28, 19, 74], we assume that both setups
follow an online and disjoint paradigm. In an online setup, individual samples (here, expert demon-
strations) are presented sequentially rather than being available simultaneously. While a portion of
the data is retained in episodic memory, the streaming data is accessible for learning only once. In a
disjoint setup, each task (here, each behavior and environment type) contains distinct and unrelated
information from the others. In this setup, as the agent embarks on learning new tasks, it does not
receive any samples from previously encountered tasks. Importantly, we do not rely on predefined
task boundaries for training and evaluation.

B.2 Behavior Incremental Learning

In the ALFRED benchmark, episodes comprise seven distinct behavior types: EXAMINE, HEAT,
PICK&PLACE, COOL, CLEAN, PICK2&PLACE, and MOVABLE. Each behavior type presents dis-
tinct goal conditions that the agents must fulfill by learning how to achieve them. In the Behavior-IL
setup, we employ the original validation split of the ALFRED benchmark for validation and five
randomly ordered sequences of behavior types for training as follows.

1. EXAMINE −→ HEAT −→ PICK2&PLACE −→ COOL −→ PICK&PLACE −→ CLEAN −→ MOVABLE

2. PICK&PLACE −→ PICK2&PLACE −→ CLEAN −→ HEAT −→ EXAMINE −→ MOVABLE −→ COOL

3. PICK&PLACE −→ EXAMINE −→ MOVABLE −→ CLEAN −→ PICK2&PLACE −→ COOL −→ HEAT

4. MOVABLE −→ PICK2&PLACE −→ EXAMINE −→ PICK&PLACE −→ HEAT −→ COOL −→ CLEAN

5. CLEAN −→ PICK&PLACE −→ MOVABLE −→ HEAT −→ COOL −→ PICK2&PLACE −→ EXAMINE

B.3 Environment Incremental Learning

Episodes in the ALFRED benchmark are generated from four distinct environment types supported
by AI2-THOR [49]: KITCHENS, LIVINGROOMS, BEDROOMS, and BATHROOMS. Each environ-
ment type has 30 variations of the environment type that enable agents to learn behaviors in diverse
room layouts and visual appearances. Similar to the Behavior-IL setup, for training, Environment-IL
also employs five randomly ordered sequences of environment types as follows.

1. BEDROOMS −→ BATHROOMS −→ LIVINGROOMS −→ KITCHENS

2. BATHROOMS −→ BEDROOMS −→ KITCHENS −→ LIVINGROOMS

3. BEDROOMS −→ LIVINGROOMS −→ BATHROOMS −→ KITCHENS

4. BEDROOMS −→ BATHROOMS −→ KITCHENS −→ LIVINGROOMS

5. BATHROOMS −→ KITCHENS −→ BEDROOMS −→ LIVINGROOMS

As discussed in Sec. 3.2.2, we observe an imbalance in the ‘train’ and ‘validation’ splits of the
original ALFRED across the environment types: for each KITCHENS, LIVINGROOMS, BEDROOMS,
and BATHROOMS, 11, 056, 3, 456, 3, 370, and 3, 141 episodes for the ‘train’ split and 432, 129, 106,
and 153 for the ‘validation’ seen split, and 468, 146, 120, and 87 for the ‘validation’ unseen split.

To balance them, we subsample the train and validation episodes per environment type as follows.
For the ‘train’ split, we subsample 3, 141 episodes, leading to 12, 564 episodes in total. For the
‘validation’ seen split, we subsample 106 episodes, leading to 424 episodes in total. Finally, for the
‘validation’ unseen split, we subsample 87 episodes, leading to 348 episodes in total.

15

Algorithm 1 Pseudo code for CAMA

Input Model πθ parameterized by θ, Memory M, Training data stream D, Learning rate µ,
Confidence score queues Q, Scalar β, N , Appeared action set A, Appeared object class set C
for (x, y) ∈ D do // Samples arrive from the stream

Sample (x′, y′, z′old)← RandomSample(M) // Acquire triplets from the memory
z, z′ ← fθ([x;x

′]) // Obtain logits from the model
L = CrossEntropyLoss([z; z′], [y; y′]) + β∥z′ − z′old∥22 // Compute the total loss
θ ← θ − µ · ∇θL
Q← MaintainRecentConfidences(Q,N, z) // Maintain N recent confidence scores
γ = CalculateAdaptiveRatio(A, C, Q)
z′new = γz′old + (1− γ)z′ // Update old logits by CAMA (Sec. 4.1)
UpdateM(x′, y′, z′old)←M(x′, y′, z′new) // Update logits for samples retrieved from memory
M← ReservoirSampler (M, (x, y, z)) // Update Memory

end for

C Extended Approach

As described in Sec. 4.1, the high-level procedure of our CAMA is described in Algorithm 1. When
new samples, denoted as x (representing expert demonstrations), are received, we retrieve samples,
denoted by x′, from episodic memory. Subsequently, we obtain the respective logits, denoted by z
and z′, from the model, denoted by πθ. With these logits, we compute the gradient of the joint loss,
which combines cross entropy and knowledge distillation, to update the model parameters θ.

After updating θ, we maintain a record of the N most recent confidence scores in separate queues,
denoted by Q, for each action and object class for x. Once these recent scores are maintained, we
dynamically calculate the coefficients, γa and γc, to weight-sum the previous and current logits,
denoted by z′old and z′, leading to the updated logits, denoted by z′new, which are then stored in
episodic memory. For more details on the γa and γc calculations, kindly refer to Sec. 4.1.

D Extended Experiment Results

D.1 Evaluation Metrics

For training and evaluation, the ALFRED dataset [11] consists of three splits; ‘train,’ ‘validation,’
and ‘test.’ Agents are trained with the ‘train’ split and validate their approaches in the ‘validation’
split with the ground-truth information of the tasks in those splits. The agents are then evaluated in
the ‘validation’ and ‘test’ split, but they do not have any access to the ground-truth information of
the tasks. As the ground-truth labels of the ‘test’ split are not publicly available, we evaluate our
agent and baselines and report the results in the validation split.

The validation split also consists of two folds: seen and unseen environments in which agents are/are
not trained. Seen environments allow evaluating the task completion ability of agents in the same
visual domain as training environments. Unseen environments further allow evaluating agents’ task
completion ability in different visual domains from training environments, which is considered more
challenging than seen environments.

For the evaluation of task completion ability, the primary metric is the success rate (SR) which
measures the ratio of completed tasks, indicating the task completion ability of the agent. Another
metric is the goal-condition success rate (GC) which measures the ratio of satisfied goal conditions,
indicating the partial task completion ability of the agent. We evaluate all agents’ performance in
terms of SR and GC in both seen and unseen environments and the main metric is unseen SR.

[11] also penalizes SR and GC with path-length-weighted (PLW) scores proportional to trajectory
lengths. Considering the model [75] used in our experiments lags significantly behind human per-
formance in terms of task completion ability (i.e., unseen success rates), however, we focus mainly
on task completion ability and leave the examination of efficiency aspects for future investigations.

16

D.2 Baselines

CLIB [27] is a method that maintains an optimal episodic memory based on the importance of each
sample. DER++ [19] aims to distill information about past data by storing not only images and labels
but also logits, comparing them with the logits of the current model. ER [31] constructs the training
batch with half of the current task stream and the other half of the data in memory, to remember past
data while learning about a new task. MIR [28] uses samples that received the most interference from
previous learning, rather than randomly retrieving from memory when composing the training batch.
EWC++ [24] prevents forgetting from parameter overwriting by penalizing changes of important
parameters. X-DER [20] rewrites logits for the portions corresponding to the classes of past tasks
to incorporate newly acquired experience information about past tasks while learning new tasks.
Following the prior methods [51, 52, 76] that keep visual encoders frozen, our agent’s visual encoder
also remains frozen, and thus we omit the contrastive learning part [77] in X-DER.

D.3 Model Architecture and Training

For model architecture, we adopt a recently proposed learning-based agent [75] that perceives the
surrounding views and predicts a sequence of actions and object masks using factorized branches
[51]. Following the common practice of prior arts [11, 51, 52, 76, 75], we train our agent with
imitation learning, specifically behavior cloning. We detail the architecture and training below.

Model Architecture. The architecture of our CAMA and the baselines is based on a recent ap-
proach [51] that uses separate modules for effective action prediction and object localization to better
address different semantic understandings from each other. Specifically, let yt = f(xt) be the agent
that maps the input xt = (vt, l, ya,t−1) to the output yt = (ya,t, yc,t). For the input, each vt and
l denotes the RGB images (i.e., surrounding views) and step-by-step instructions. For the output,
each ya and yc denotes the action and object class to be interacted with.

As mentioned above, the agent f is comprised of two separate modules: the action prediction mod-
ule at = faction(vt, l, ya,t−1) and the object localization module ct = fclass(vt, l, ya,t−1). Both
modules encode the instructions l with a self-attention-based Bi-LSTM network, resulting in the
attended language feature, l̂. To capture the correspondence between visual and textual information,
we conduct point-wise convolution for vt by filters generated from l̂, resulting in the attended visual
feature v̂t. The decoder of each module updates its hidden state based on the attended visual and
textual features, v̂t and l̂, with the previous action ya,t−1, resulting in ha

t and hc
t for the action pre-

diction module and the object localization module. Finally, fully connected layers in faction take as
input v̂t, l̂, ya,t−1, and ha

t and predict the current action ya,t. Similarly, fully connected layers in
fclass take as input hc

t and predict the current object class yc,t with which to interact.

For more details of the modules, kindly refer to [51].

Training. Following [11], we adopt imitation learning for training, specifically behavior cloning,
that mimics an expert’s behaviors in a teacher-forcing manner. Formally, let a and a∗ be a sequence
of predicted actions and the corresponding ground-truth actions. Similarly, let c and c∗ be a sequence
of predicted object classes to be interacted with and the corresponding labels. Then each loss of the
action and object class prediction is obtained by a cross-entropy loss as below:

Laction(a, a∗) = −
T∑

t=1

a∗t log at, Lclass(c, c∗) = −
T∑

t=1

1[a∗t = interaction] · c∗t log ct, (4)

where T denotes the length of an episode that the agent conducts and 1[a∗t = interaction] is an
indicator function that activates when an action a∗t is an object interaction action.

In addition, [78] adopts progress monitoring. Formally, let p and p∗ be a sequence of predicted
progress values and the corresponding ground-truth progress values. Then the progress loss is ob-

17

tained by a mean square error (MSE) loss as below:

Lprogress(p,p∗) =
1

T

T∑
t=1

(pt − p∗t)
2. (5)

Using them, the agent jointly minimizes the joint loss as follows:

L(y, y∗) = λaLaction(ya, y
∗
a) + λcLclass(yc, y

∗
c) + λpLprogress(yp, y

∗
p), (6)

where y indicates the output of a model including an action sequence, ya, a class sequence, yc,
and a progress value sequence, yp, for an auxiliary task. y∗a, y∗c , and y∗p denote the corresponding
ground-truth labels. The loss terms are summed by the balancing coefficients λa, λc, and λp.

D.4 Implementation Details

For visual observation, inspired by [76, 75, 79], we allow the agent to perceive surrounding views
(in this case, 5 views from the front, left, right, up, and down directions). For language instructions,
the agents receive step-by-step instructions that describe how to accomplish the goal in detail.

For the training loss described in Section D.3, we set the balancing coefficients λa = 1.0, λc = 1.0,
and λp = 1.0 for our CAMA and the baselines. Following [51], we augment visual observations
by adopting two strategies: AutoAugment [80] and RGB-channel swapping. For computational
efficiency, we cache 6 types of augmented episodes per episode and choose one of them whenever
we augment it.

To update the parameters of our CAMA and the baselines, we use the Adam optimizer with an initial
learning rate of 0.001 and a batch size of 32 per streamed sample. We utilize the ExponentalLR [81]
and ResetLR [82] schedulers with γ = 0.95 and m = 10 for our CAMA and the baselines except
CLIB with γ = 0.9999.

D.5 Qualitative Analysis

We provide qualitative examples of our CAMA in the Behavior-IL and Environment-IL setups by
comparison with the naïve (i.e., Finetuning) and prior best-performing (DER++) methods.

The Behavior-IL setup. In Figure 4, the agent is evaluated for the previous behavior, τj−1 =
HEAT while learning the current behavior, τj = PICK2&PLACE. Here, the agent is required to heat
a mug and put it on the coffee machine. The agent can sequentially complete the task by 1) picking
up a mug, 2) heating it using a microwave, and 3) putting it on the coffee machine.

‘Finetuning’ first explores the environment to find a mug. However, it fails to recognize the mug
and therefore keeps wandering in the environment, eventually leading to task failure. Meanwhile,
‘DER++’ succeeds in finding the mug and picking it up but forgets how to reach a microwave above
the agent to heat an object. The agent also keeps wandering in the environment and eventually, it fails
at the task. In contrast, our CAMA succeeds in navigating to and picking up the mug. After grabbing
the mug, our agent finds, reaches the microwave above, and successfully heats the mug. Finally, our
agent then put the heated mug on the coffee machine, as described in the instructions, which implies
that our CAMA enables the agent to maintain the knowledge of the previous behaviors.

The Environment-IL setup. In Figure 5, the agent is evaluated for the previous environment,
ek−1 = BEDROOMS, while learning the current environment, ek = BATHROOMS. The agent is
required to examine a CD under the light of a lamp. To complete the task, the agent needs to 1) pick
up a CD and 2) turn on a lamp while holding the CD.

Similarly in the Behavior-IL setup, ‘Finetuning’ cannot find a CD and therefore navigates to other
objects irrelevant to the task, which eventually leads to task failure. On the other hand, ‘DER++’
successfully picks up a CD and reaches the lamp in the close vicinity. However, the agent forgets to
turn on the lamp and therefore starts to navigate to other irrelevant objects, which also leads to task
failure. In contrast, our CAMA can pick up the CD and navigate to the lamp as ‘DER++’ does. Our
agent then turns on the light to examine the held CD and succeeds in the task.

18

Fi
ne

tu
ni

ng

D
ER

++

C
A

M
A

(O
ur

s)

Instructions:

Turn around to your right move forward then turn left, head to the coffee maker. Pick up the mug in front of the coffee maker
on the counter. Turn to your left head to the microwave above the stove. Open the microwave then put in and out the mug
then close the microwave. Turn to your right and head to the coffee maker. Put the mug on the coffee maker.

PICK2&PLACEHEATInteracted ObjectIrrelevant Action

Figure 4: Qualitative analysis of the proposed method (Behavior-IL). The agent, having already acquired
knowledge of the behavior τj−1 = HEAT, proceeds to learn the new behavior τj = PICK2&PLACE. Subse-
quently, we evaluate the agent’s ability of the prior behavior τj−1 to determine if any forgetting has occurred.
Irrelevant Action denotes an action that results in incorrect navigation. ‘Finetuning’ fails to find a target object,
‘Mug,’ and eventually fails at the task. DER++ succeeds in navigating to and picking up the mug but fails to
reach a microwave above the agent, also leading to task failure. On the contrary, our CAMA further succeeds
in reaching the microwave, heating the mug, and putting it back on the coffee machine, leading to task success.

Fi
ne

tu
ni

ng

D
ER

++

C
A

M
A

(O
ur

s)

Instructions:

Head to the right side of the desk. Take the CD from the desk. Take a step to the right. Turn on the lamp.

BATHROOMSBEDROOMSInteracted ObjectIrrelevant Action

Figure 5: Qualitative analysis of the proposed method (Environment-IL). The agent that has already ac-
quired knowledge of the environment ek−1 = BEDROOMS proceeds to learn the new environment ek =
BATHROOMS. We then assess the agent’s capability in the prior environment ek−1 to determine whether any
forgetting has occurred. Irrelevant Action denotes an action that results in incorrect navigation. ‘Finetuning’
fails to find a target object, ‘CD,’ eventually leading to task failure. DER++ can navigate to and pick up the
CD, but fails to turn on the lamp. On the contrary, our CAMA can also turn on the lamp and complete the task.

D.6 Imbalanced Scenarios in the Environment-IL Setup

To explore a data-imbalance scenario [83, 84], we remove the subsampling process in Sec. 3.2.2
for the Environment-IL setup and construct an imbalanced dataset that we name the imbalanced
Environment-IL setup. In the imbalanced Environment-IL setup, we compare our CAMA with the
baselines and summarize the result in Table 3.

We observe that even with such an imbalance, CAMA still outperforms the baselines by noticeable
margins, highlighting the efficacy of the proposed approach. In particular, we observe significant
improvements of SRavg and GCavg in both valid seen and unseen splits, implying that CAMA
achieves promising performance in both partial and full task completion.

19

Model

Imbalanced Environment-IL
Valid Seen Valid Unseen

SRlast ↑ GClast ↑ SRavg ↑ GCavg ↑ SRlast ↑ GClast ↑ SRavg ↑ GCavg ↑
EWC 27.58± 2.03 38.58± 2.40 35.44± 1.42 45.14± 1.58 9.76± 0.70 22.94± 0.61 12.32± 1.03 28.06± 1.31
ER 32.22± 1.98 43.03± 1.93 38.87± 0.29 49.06± 0.83 11.80± 0.86 26.43± 0.84 13.43± 0.61 30.75± 0.52
MIR 27.58± 2.03 38.58± 2.40 35.44± 1.42 45.14± 1.58 9.76± 0.70 22.94± 0.61 12.32± 1.03 28.06± 1.31
CLIB 24.70± 2.20 35.21± 2.78 35.32± 1.77 44.55± 1.78 8.24± 1.14 21.96± 1.11 10.97± 1.50 28.03± 1.11
DER++ 31.54± 1.42 42.99± 1.61 33.01± 1.97 43.89± 2.21 12.20± 0.69 27.28± 1.23 11.90± 1.46 28.33± 1.74
X-DER 31.10± 1.10 42.83± 1.13 32.96± 1.70 43.81± 1.64 12.93± 0.51 27.44± 0.97 12.49± 0.95 29.07± 1.30

CAMA w/o D.C. 35.40± 1.34 46.55± 1.40 39.54± 1.30 49.27± 1.33 14.19± 1.22 29.11± 1.42 16.02± 1.20 33.16± 1.25
CAMA (Ours) 32.32± 1.62 43.72± 1.81 38.67± 2.07 49.09± 1.90 14.53± 0.40 28.75± 0.92 17.24± 1.78 33.36± 1.47

Table 3: Comparison with state-of-the-art methods in the imbalanced Environment-IL setup. The highest
value per metric is in bold. We report the means and standard errors of multiple runs for random seeds.

0 20 40 60 80
Object Index

0
200
400
600
800

1000
1200

Fr
eq

ue
nc

y

Examine

0 20 40 60 80
Object Index

0
100
200
300
400
500
600

Fr
eq

ue
nc

y

Heat

0 20 40 60 80
Object Index

0

100

200

300

400

500

600

Fr
eq

ue
nc

y

Cool

Figure 6: The frequency of objects used for each behavior in the Behavior-IL setup. Each x-axis and y-axis
denotes the index of an object and the object’s frequency appearing in the corresponding behavior. While the
behaviors, HEAT and COOL, have several shared objects (e.g., apples, tomatoes, etc.) during task completion,
the behavior, EXAMINE, rarely have them with HEAT and COOL.

E Discussion

E.1 Confidence Scores as a Good Indicator of New Logits’ Quality

We use the averaged class-wise confidence score as an indicator to estimate how much new logits
are informative. This is because using the confidence scores for the ground truths, which we use for
logit update, allows us to estimate how well the model has learned respective classes.

For example, If the model p predicts p(i) = 1 for the class i, it implies that the model has learned
the class i well, i.e., it may contain ample information about the class i. Conversely, if the model
predicts p(i) = 0, it implies that the model has learned the class i poorly, i.e., it may contain little
information about the class i [22].

We can use the most single recent confidence score as the ‘indicator,’ but such a single confidence
score could be noisy during training for various reasons such as the degree of augmentation and the
difficulty of a sample. To alleviate this issue, we use the N recent confidence scores as an indicator
of the quality of the new logits.

E.2 Dependency of Performance on a Task Order in Incremental Setups

We agree that the performance improvements seem relatively marginal, possibly due to the large
standard error of the means. We believe this is because, in an incremental setup in embodied
tasks, some tasks may share relatively many action and object classes, while others may share fewer
classes. Previously learning such shared action and object classes may help better learning the cur-
rent task (i.e., forward transfer) and this implies that a model’s performance may depend on the order
of the tasks (i.e., how much the model learns the shared action and object classes ahead).

For example, while learning to cool an object, learning some actions (e.g., opening/closing a fridge)
and object classes (e.g., apples, tomatoes, etc.) may help next learn to heat an object as such actions
and object classes can also be used for heating (e.g., heat an ‘apple,’ a ‘tomato,’ etc. by ‘open-
ing/closing’ a microwave). We empirically observe that for the behavior, ‘Heat,’ our agent achieves
3.70% Valid Unseen SR after learning the behavior, ‘Cool,’ while it achieves zero Valid Unseen SR
after learning the behavior, ‘Examine,’ which does have fewer shared object classes as illustrated in
Figure 6, implying the dependency of performance on a task order.

20

	Introduction
	Related Work
	CL-ALFRED: Continual Learning Setups for Embodied Agents
	Task Formulation
	Continual Learning Setups
	Behavior Incremental Learning
	Environment Incremental Learning

	Approach
	Confidence-Aware Moving Average
	Model Training

	Experiments
	Comparison with State of the Art
	The Effectiveness of Dynamically Determined Coefficients
	Qualitative Analysis

	Conclusion
	Extended Related Work
	Additional CL-ALFRED Benchmark Details
	Continual Learning Setups
	Behavior Incremental Learning
	Environment Incremental Learning

	Extended Approach
	Extended Experiment Results
	Evaluation Metrics
	Baselines
	Model Architecture and Training
	Implementation Details
	Qualitative Analysis
	Imbalanced Scenarios in the Environment-IL Setup

	Discussion
	Confidence Scores as a Good Indicator of New Logits' Quality
	Dependency of Performance on a Task Order in Incremental Setups

