
Robot Utility Models: General Policies for Zero-Shot
Deployment in New Environments

Haritheja Etukuru∗1, Norihito Naka1, Zijin Hu1, Seungjae Lee1, Julian Mehu2, Aaron Edsinger2
Chris Paxton2, Soumith Chintala3, Lerrel Pinto1, Nur Muhammad “Mahi” Shafiullah∗1,2

1New York University, 2Hello Robot Inc., 3Meta Inc.

Abstract: Robot models, particularly those trained with large amounts of data, have
recently shown a plethora of real-world manipulation and navigation capabilities.
Several independent efforts have shown that given sufficient training data in an
environment, robot policies can generalize to demonstrated variations in that
environment. However, needing to finetune robot models to every new environment
stands in stark contrast to models in language or vision that can be deployed
zero-shot for open-world problems. In this work, we present Robot Utility Models
(RUMs), a framework for training and deploying zero-shot robot policies that can
directly generalize to new environments without any finetuning. To create RUMs
efficiently, we develop new tools to quickly collect data for mobile manipulation
tasks, integrate such data into a policy with multi-modal imitation learning, and
deploy policies on-device on Hello Robot Stretch, a cheap commodity robot, with
an external mLLM verifier for retrying. We train five such utility models for
opening cabinet doors, opening drawers, picking up napkins, picking up paper
bags, and reorienting fallen objects. Our system, on average, achieves 90% success
rate in unseen, novel environments interacting with unseen objects. Moreover,
the utility models can also succeed in different robot and camera set-ups with no
further data, training, or fine-tuning. Primary among our lessons are the importance
of training data over training algorithm and policy class, guidance about data
scaling, necessity for diverse yet high-quality demonstrations, and a recipe for robot
introspection and retrying to improve performance on individual environments.

Keywords: Imitation Learning, Manipulation, Robotics

3. Deploy in new environments, zero shot, with mLLM feedback

Robot Utility Models
train once, deploy zero-shot

1. Collect large, diverse,
task specific dataset.

â

RUM
policy

2. Train multi-modal
behavior generation model

RUM
policy

mLLM
Failure? 

<restart> â

E.g. your
home

Door opening

Drawer opening Tissue pick up

Bag Pick Up

Object reorientation

Figure 1: Robot Utility Models are trained on a diverse set of environments and objects, and then can
be deployed in novel environments with novel objects without any further data or training.

*Denotes Equal Contribution

8th Conference on Robot Learning (CoRL 2024), Munich, Germany.

1 Introduction

We have seen rapid progress in training manipulation skills recently [1, 2, 3, 4, 5, 6, 7], largely
brought about by fitting deep networks on data collected by teleoperating robots [8, 9, 10, 11, 12].
The mechanism for deploying such skills in new environments mimics the pretrain-then-finetune
strategy first developed by the vision community circa 2014 [13]. There, models were first pretrained
on ImageNet and then finetuned on task-specific data such as detection, segmentation, and pose
estimation [13, 14].

In the context of robotics, this strategy involves pretraining on large robot datasets [15, 12, 16, 17] to
produce a robot foundation model, which is then fine-tuned on data collected in new environments or
tasks [16, 18, 7]. This need to fine-tune the foundation model for each and every new environment is
limiting as it requires humans to collect data in the very environment where the robot is expected to
perform. So while vision and language models have moved on to zero-shot deployments, i.e. without
environment-specific finetuning data, such a capability eludes most robot manipulators. This is not to
say that there have not been attempts to create zero-shot manipulation models – several foundational
work in grasping and pick-and-place [19, 20, 21] have tackled this problem albeit with a task-specific
solution.

Creating a general policy for an arbitrary task that works zero-shot is challenging for several reasons.
First, training such a model requires a large amount of data, and collecting robot data is difficult
and expensive due to the need for human demonstrations. Second, open-world datasets have diverse
and multi-modal behaviors, making it hard to fit models to this data. Third, unlike standardized
data in vision and language, robotics lacks uniform hardware setups, complicating real-time model
deployment. Finally, zero-shot models in new environments have higher failure rates, necessitating
robust error detection and recovery mechanisms.

In this work, we introduce Robot Utility Models (RUMs), a new framework for training focused and
functional utility models to complete helpful tasks that can be deployed zero-shot without further
training or fine-tuning in novel environments. This is done by taking a systems-first approach. To
scale up our datasets without compromising on data quality, we develop a new tool, building on
prior work in untethered data collection [16, 22]. We train policies on these diverse dataset with
state-of-the-art multi-modal behavior learning algorithms [23, 24] and show how they can absorb
and scale with large-scale demonstration data. Finally, we deploy the policy in multiple different
environments out of the box, with self-critique via mLLMs [25] and retrying, showing how the policy
can be robustly executed on cheap, general-purpose hardware. A selection of our trained models are
available on the Hello Robot Stretch without much modification.

Creating and deploying RUMs led us to several interesting lessons. First, we find that the quantity and
quality of data is crucial for training a utility model, with the choice of model architecture being less
critical. Second, we see that the diversity of the data collected is crucial for the model to generalize
to new environments, and more important than the raw quantity of data. Third, we find that the
model can be made more capable in single environments by performing self-critique on the model
performance with an independent model and retrying when appropriate.

To validate RUMs, we run a total of 2,950 robot rollouts in real-world environments including
homes in New York City (NY), Jersey City (NJ), and Pittsburgh (PA). These experiments reveal the
following:

• We show that it is possible to create general Robot Utility Models with a moderate amount of data
in the order of 1,000 demonstrations (Section 2). These RUMs achieve a 90% average success rate
on zero-shot deployment in 25 novel environments (Section 3.1).

• The success of RUMs relies primarily on two key techniques. First, the use of multi-modal
policies (Section 2.3) provides a zero-shot success rate of 74.4% (Section 3.2). Second, the mLLM
based self-critique and retrying system (Section 2.4) further improves the success rate by 15.6%
(Section 3.6).

2

• While the overall framework for RUMs is straightforward, the devil is in the details, where we find
gains from unexpected sources, e.g. data diversity vs. data quantity (Section 3.4 and 3.5).

To encourage the development of RUMs for a wider variety of tasks, we open sourced our code, data,
models, hardware designs, as well as our experiment and deployment videos are and can be found on
our website: robotutilitymodels.com.

2 Robot Utility Models

We take a full-stack approach to create Robot Utility Models. At its core, our system follows the
imitation learning framework. However, to effectively scale imitation learning to the point where
our trained policies are deployable zero-shot, we create new tools and techniques to improve data
collection, model training, inference, and deployment.

2.1 Data collection tool

One of the primary requirements of our system is to be able to scale up diverse yet accurate demon-
stration data for cheap. To this end, we continue on the evolutionary path of hand-held, portable
data collection tools [26, 27, 28, 16, 22] that let us quickly collect precise demonstrations. We use a
hand-held data collection tool built out of an iPhone Pro and a bill of materials that adds up to $25.

Our design focuses on portability, convenience, and quick setup, which we found, experimentally,
to be essential for scaling up robot datasets and training RUMs. As shown in Section 3.3, data
diversity—data collection in a large number of environments—is crucial. Therefore, having a
portable, easy-to-mass-produce tool is key for fast deployment. Additionally, it is important to
minimize the “per-environment set-up time”, whether that time is spent setting up the data collection
system, calibrating the camera, or the tool’s SLAM system.

Wrist mounted iPhone Pro

Flexible fingers

Robot arm with 6D pose
& position control

3D printed chassis with
cable-driven trigger

Figure 2: Our data collection tool (right), is built
out of an iPhone Pro and a bill of materials that
adds up to $25. The tool is portable, robust, and
makes it easy to start collecting data in a new en-
vironment in seconds. We match the end-effector
on the Hello Stretch (left) for seamless transfer of
policies trained on Stick data.

For the above reason, we design our data collec-
tion tool around the ARKit API from the widely
available and used iPhone Pro (Figure 2). The
iPhone can collect RGB video and depth data
at up to 60 Hz and high precision 6D pose data
from the ARKit API at up to 100Hz. To cap-
ture the gripper opening information, we trained
an RGB-based model that predicts the gripper
aperture from images. Furthermore, this data
is automatically synchronized and timestamped
by the iPhone without the need for any calibra-
tion, further minimizing set-up time. This is in
contrast to other data collection tools based on
visual SLAM systems which have limited pre-
cision and are non-robust around “textureless”
scenes such as close to flat walls, ceilings, or
corners [22, 27]. Finally, not needing camera
calibration makes our system deployable out-of-
the-box in unseen environments, especially in the real world where the environment is not controlled.

2.2 Collected datasets

We collect data for each of our five tasks, which are as defined below:

• Door opening: Open doors with a long handle, on e.g. cabinets and microwaves. Due to hardware
limitations, our robot cannot open doors with round knobs, so we exclude them from our dataset.

• Drawer opening: Open a drawer with a handle. We exclude drawers with knobs from our dataset
for similar reasons as above.

3

https://robotutilitymodels.com

• Reorientation: Pick up a cylindrical object (e.g. bottle) lying on a flat surface and place it upright
on the same surface.

• Tissue pickup: Pick up a soft, flexible tissue paper from any tissue paper box.

• Bag pickup: Pick up a kraft paper bag or similar other bags from a flat surface.

For each of our five RUMs, we focused on gathering approximately 1,000 demonstrations on ap-
proximately 40 environments, with about 25 demonstrations per environment on average. The
only exceptions are door opening with 1,200 and drawer opening with 525 demonstrations. A
sample of demonstrations from these environments can be found on our website: robotutilitymod-
els.com/#dataset. For the door opening task, we take demonstrations from the Homes of New York
(HoNY) dataset [16], and add on additional data. For the other tasks, our dataset consists of new
demonstrations collected using the our data collection tool on a novel set of environments and objects.
For demonstrations collected from the HoNY dataset, we do a manual quality check and exclude
environments that have a high number of low-quality demonstrations, such as failed demonstrations.
Note that, to keep our experiments unbiased, we hold out test environments and objects and never
collect any data on them. To gain quick insight on different task data we use for training, we created
an interactive data diversity visualization tool: robotutilitymodels.com/data diversity/.

2.3 Model training

Given that our data is collected by a large set of demonstration collectors, conceptually it is important
for the model to handle any resultant multi-modality in the dataset. In this work, we train a large
set of policy classes on our datasets for each task. Among the policy classes, the best performing
ones are VQ-BeT [23] and Diffusion Policy (DP) [24]. We also train ACT [1] and MLP-BC policies
on a limited set of tasks. Each policy class shares some features, such as a ResNet34-based vision
encoder initialized to the HPR encoder from [16], and a transformer-based policy trunk. We also
train each model for the same 500 epochs. Beyond that, we sweep to find the best hyperparameters
for learning rate, history length, and chunk size, and use the recommended hyperparameters from
the original papers for each model. Our final VQ-BeT models are trained on data subsampled at
3.75Hz, and uses 6 most recent frames of history to predict the next action. All of our models predict
the action in relative 6D space for the robot end-effector, and absolute value in the range [0, 1] for
the gripper opening. We discuss the impact of choosing different training algorithms in Section 3.2.
Training all of our models took between 24 and 48 hours on 2 Nvidia A100 GPUs on our cluster,
with proportional speed-ups by using more GPUs or using more recent GPUs like H100s.

2.4 Retrying with GPT-4o feedback

As the timesteps progress, does the robotic
arm open the door AND is the robot arm
grasping the handle in the LAST timestep?
Please respond with only 'Yes' or ‘No'

As the timesteps progress, does the robotic
arm open the door AND is the robot arm
grasping the handle in the LAST timestep?
Please respond with only 'Yes' or ‘No'

No

<Reset and retry>

Yes

<Terminate>

Robot Utility Model Multimodal LLM (gpt-4o-2024-05-13)

Trial 1 Trial 2

Figure 3: We use gpt-4o-2024-05-13 to ver-
ify the success of a task given a summary of robot
observations. If the mLLM detects a failure, we
automatically reset the robot and retry the task with
a new initial robot state until success or timeout.

While a pre-trained model can solve the task
in a new environment, to achieve the best pos-
sible performance, it is helpful to have ad-
ditional runtime support for the model. For
our deployment, we use an multimodal LLM
(gpt-4o-2024-05-13) as an introspection
module for our policies for a success detection
and retrying mechanism. We define a single
verification prompt for each task, and ask the
mLLM to verify the success of the task given a
summary of robot observations. As for the run
summary, we give the mLLM every other frame
from the robot camera, which is either from the
head or the wrist camera depending on the task.
If the mLLM detects a failure (Figure 3), RUM
automatically resets the robot to a home position and retries the task with a new initial robot state.

4

https://robotutilitymodels.com/#dataset
https://robotutilitymodels.com/#dataset
https://robotutilitymodels.com/data_diversity/

2.5 Deployment Details

Our hardware for Robot Utility Models deployment is the Hello Robot: Stretch robot with an iPhone
on the wrist (Figure 2). We use the iPhone Pro as the deployment camera. We run lightweight policies
(VQ-BeT, ACT, and MLP-BC) directly on the robot’s Intel NUC, and Diffusion Policy through a
GPU workstation. Our primary hardware for Robot Utility Models deployment is the Hello Robot:
Stretch robots with an iPhone on the wrist, but we support deploying our models on any robot arm
with relative 6D pose and position control (Figure 8). We display our gripper on an xArm, as well as
experiments on it in Appendix A.1.

3 Capabilities of Robot Utility Models

To understand the capabilities of RUMs, we evaluate each of our models on a diverse set of environ-
ments. At the same time, we try to examine our recipe for training utility models and answer a set of
questions about the trained models by running a set of ablation experiments. The primary questions
that we try to answer are the following:

• How well do Robot Utility Models solve a task in an unseen environment while operating on
unseen objects?

• What is the relative importance of different components of Robot Utility Models, such as training
data, training algorithm, and self-verification?

– What scale of data is needed to train capable RUMs?
– What properties of data are most important for training RUMs?
– How does mLLM-based self-critique affect RUMs, and where does it succeed or fail?

• How well can we deploy RUMs on new robot embodiments? Appendix A.1.

Evaluation details We set up 25 novel environments – five for each task – with objects and props
not seen in the training dataset. To create these evaluation environments, we take the robot to
previously unseen kitchens, purchase new furniture online (door and drawer opening), and source
new objects manually verified to not be in the training set (reorientation, bag and tissue pick up).
We evaluate each system and policy for 10 trials in each of these environments, starting from the
same grid of starting positions facing the task space used by [16]. For the retrying-based experiments,
while RUMs take 1.31 tries in average to succeed (Section 3.6), we set a 10-try timeout to avoid
getting stuck in infinite retry loops.

3.1 Zero-shot evaluation of RUMs on unseen environments

The most important test of capability for a Robot Utility Model is whether such a model is capable of
solving the target task in a new environment operating on new objects. We test for this capability by
running our RUMs on our set of 25 eval environments and objects not seen during training.

On Figure 4, we see that on unseen and novel environments, RUMs perform well, as, with automated
retrying, it achieves a 90% success rate overall, and ranging between 84% to 94% on individual

Chart 1

Su
cc

es
s

ra
te

 (%
)

0

20

40

60

80

100

Reorientation Drawer opening Door opening Tissue pick up Bag pick up

8492949486

90
Average

VQ-BeT

Table 1

VQ-BeT VQ-BeT stddev VQ-BeT stderr

Reorientation 86 9 4

Drawer opening 94 9 4

Door opening 94 13 6

Tissue pick up 92 13 6

Bag pick up 84 15 7

X X X X

X

X X X
X
X

X
X
X XX

X

X

X X X

X

X

X
X X

1

Figure 4: Success rate of Robot Utility Models
on average over five novel scenes in five different
tasks, with automated retrying in each trial. The
X’s on the figure denote success rates from individ-
ual environments.

tasks. We see that in every environment we eval-
uate on, RUMs is able to achieve some success.
This success implies that our policies have a
general idea of solving the target task; then such
policies are further boosted with post-training
methods (Section 3.6). On all of our follow-
ing experiments, we try to understand these
two factors separately: the raw performance of
the underlying RUM policies, and the effect of
introspection and retrying on the performance
of RUMs.

5

Chart 1

Reorientation

Tissue pick up

Success rate (%)
0 20 40 60 80 100

MLP-BC ACT Diffusion Policy VQ-BeT

Table 1

Diffusion Policy VQ-BeT MLP-BC ACT

Reorientation 62 68 44 48

Tissue pick up 72 80 64 66

2

Su
cc

es
s r

at
e

(%
)

0

25

50

75

100

Reorientation Drawer opening Door opening Tissue pick up Bag pick up
Diffusion Policy VQ-BeT

Table 1

Diffusion Policy VQ-BeT DP stddev VQ stddev DP stderr VQ stderr

Reorientation 62 68 31.144823 18.16590212 13.92838827503988.12403840258551
Drawer opening 66 76 28.80972058 33.61547263 12.884098725930915.0332963792927
Door opening 62 76 23.87467277 21.67948339 10.67707825085669.69535971542352
Tissue pick up 72 80 38.98717738 12.24744871 17.43559577450445.47722557330042
Bag pick up 82 84 20.49390153 11.40175425 9.165151389053395.09901951314943

1

Figure 5: Left: Relative comparison of the success rate (with standard error) of different policy
architectures on our dataset on all five tasks (without automated retrying). Right: Relative comparison
of different policy classes on our dataset on two tasks (without automated retrying). The performance
of VQ-BeT and Diffusion Policy is generally neck-to-neck, while the performance of other algorithms
is not far behind, implying that the training data is much more important than training algorithm.

Door Opening

Diffusion VQ-BeT

20% 42 8 24 14.35270009
40% 48 10.67707825 22 7.348469228
60% 58 11.13552873 38 9.695359715
80% 58 9.121403401 64 11.22497216

100% 62 13.92838828 76 8.124038405

Su
cc

es
s

ra
te

 (%
)

0
25
50
75

100

Data usage (% of full dataset)

20% 40% 60% 80% 100%

Diffusion VQ-BeT

Door opening

Reorientation

Diffusion VQ-BeT

20% 20 12 7.071067812 2
40% 38 24 7.348469228 5.099019514
60% 52 38 9.695359715 5.830951895
80% 62 64 10.67707825 6.782329983

100% 60 68 10.29563014 9.695359715

0
25
50
75

100

Data usage (% of full dataset)

20% 40% 60% 80% 100%

Diffusion VQ-BeT

Reorientation

Table 2

Diffusion VQ-BeT

25% 46 22 12.08304597 5.830951895
50% 64 24 15.03329638 6.782329983
75% 52 38 20.34698995 11.5758369

100% 76 84 7.483314774 10.09950494

0
25
50
75

100

Data usage (% of full dataset)

25% 50% 75% 100%

Diffusion VQ-BeT

Tissue pick up

1

Figure 6: Understanding the performance change of RUMs as we scale up the dataset on three of
our tasks, evaluated without automated retrying and shown with standard error on error bars. We
see better performance from Diffusion Policy (DP) on smaller datasets, but as we scale up, VQ-BeT
outperforms DP in 900–1,200 demonstrations limit.

3.2 Effect of policy architecture and training on RUMs

Once we have verified that RUMs can actually solve tasks in novel environments, we investigate the
relative importance of different components within the training recipe. In particular, we compare the
raw performance of different policy architectures on our dataset without the introspection component.
We train a set of policy classes on our datasets for each task, including VQ-BeT [23], Diffusion
Policy (DP) [24], and as baselines, ACT [1] and MLP-BC on two of the tasks. We show the relative
comparison of the base success rates of different policy architectures, without retrying, in Figure 5.

As we see in Figure 5, VQ-BeT and DP are the top two algorithms in terms of performance, with
comparable performance in most tasks and overlapping error bars. Moreover, we see from Figure 5
that while ACT and MLP-BC are not exactly on par, they are not far behind either. This observation
implies that with training data of sufficient quality, the choice of algorithm may not be a make-or-
break decision, and more energy should be spent on collecting diverse and accurate data. While we
have similar performances on the test environment, we use VQ-BeT over DP for our final models due
the higher performance and a lower latency on the robot CPU itself during deployment.

3.3 Effect of scaling datasets on RUMs

As our experiments show the importance of training data in creating RUMs, we investigate the
dataset properties that successful RUMs rely on. In particular, the scale of dataset at which reliable
generalization emerges, and how RUMs’ performance vary with dataset size. We train our policies on
a random subset of environments from the task-specific datasets, and evaluate them on our evaluation
environments.

In Figure 6, we show the performance of VQ-BeT and Diffusion Policy, without retrying, trained
on such data subsets on our evaluation environments as we scale up the dataset. We see that while
Diffusion Policy performs better on smaller datasets, it saturates on larger datasets where VQ-BeT
outperforms it. This observation implies that while a smaller dataset may be sufficient for training

6

capable RUMs, a larger dataset is crucial for achieving the best performance. Even on our largest
datasets, we see that the performance of VQ-BeT continues to improve as the dataset scales up,
implying that more data may improve RUMs even further.

3.4 Importance of data diversity in training RUMs

Beyond the scale of the dataset, we also investigate how the diversity of the training data impacts
the performance of RUMs in Figure 9 (left). We create two alternate datasets of equal size for the
door opening and the object reorientation tasks. The first datasets are composed of a large number
of diverse environments with roughly 25 demonstrations in each environment. The second dataset
is composed of fewer, between 5 and 6, distinct environments with roughly 200 demonstrations on
each environment. We see that on the door opening task, where the scene diversity is narrower, both
diverse and uniform environment trained policies performed well. However, in the reorientation task,
with many different unseen environments and objects, only diverse-environment trained RUM policy
performs well – the policy trained on more uniform environments experiences a 50% performance
drop. This result implies that to train an effective RUM, collecting a diverse dataset is important.

3.5 Impact of expert demonstrations on training policies

While scaling up the dataset size and diversity is important for training RUMs, an important question
to consider is the quality of the training dataset. Namely, while it may be easy to collect a large
number of demonstrations by a large number of demonstrators, the quality of the demonstrations may
vary. In this section, we investigate the value of using expert demonstrations in training RUMs.

In Figure 9 (right) we compare the performance of RUMs trained on roughly 500 demonstrations,
where the data is either sampled from expert or non-expert demonstration collectors. Here, “expertise”
is defined as experience deploying policies on the robot. We see that in general, expert data is more
valuable than non-expert data, with expert data outperforming non-expert data in all tasks. Moreover,
we see that co-training with expert and non-expert data can sometimes, but not always, improve the
performance of the policy. This observation implies depending on the task, data quality can have
different levels of suboptimality, and in extreme cases may even hurt performance in co-training,
which goes against a common practice in some earlier works [1, 12].

3.6 Effects of introspection and retrying with self-critique

Table 1

Task Mean tries to success False positive rateImprovement rate

Object reorientation 1.348837209 0% 18

Drawer opening 1.617021277 4% 20

Door opening 1.382978723 2.86% 26

Tissue pick up 1.173913043 7% 10

Bag pick up 1.047619048 10% 4

0.5

1.0

1.5

2.0

Mean tries to success

2.5%

5%

7.5%

10%

False positive rate

Object reorientation Drawer opening Door opening Tissue pick up Bag pick up

+7%

+14%

+21%

+28%

Improvement rate

+15.6%
4.8%

1.31

1

Figure 7: Understanding the details of introspec-
tion and retrying in RUMs. On the left, we see that
retrying improves the performance of RUMs by
an average of 15.6% from the ‘single-try’ perfor-
mance. In the middle, we see that with retrying,
most tasks get solved on average with 1.31 tries.
On the right, we see that the mLLM sometimes has
false positives which may let some errors slip past.

In RUMs, we are using a multimodal large lan-
guage model (mLLM) as a self-critique method
to identify failures. However, a pretrained
mLLM in practice is just another layer of fail-
safe for our robot deployment, and not a guar-
antee of success in itself. Thus, in this section
we try to understand how it helps, and how such
introspection method can fail.

In Figure 7 (left), we can see the improvement
rate of using self-critique over simply using
the RUM policies without any retrying mech-
anism. On average over our 5 tasks, we see a
15.6% improvement over simply using RUM
policies. While retrying is crucial to a higher
success rate, a system that is perpetually retrying much less useful. Thankfully, on average,
when RUMs succeeds, it does so within 1.31 tries on average, as we see from Figure 7 (mid-
dle). Finally, we analyze the primary failure mode of mLLMs, which is predicting false positives:
classifying a trajectory as a success when it’s actually a failure. On average, 4.8% of our trajectories
exhibit such behavior, constituting of half of the total errors, as seen on Figure 7 (right).

7

4 Related Works

Large Scale Data Collection The data acquisition pipeline is a key element in data-driven frame-
works. Previous work has used a variety of techniques, combining open-source datasets from diverse
simulation and real-world environments across various robot embodiments globally [29, 15, 3, 12].

Common approaches to robot demonstration collection involve pairing robots or end-effectors with
remote controllers or kinematically similar devices. These range from full robotic exoskeletons [30,
31, 32] to simpler tools [1, 33, 2], and even methods that don’t require physical robot movement [16,
26, 28, 27, 22]. Various control methods include video game controllers [34, 35], VR devices [9, 36,
11, 37, 38, 39, 40, 5], and mobile phones [8]. Physically moving a robot is intuitive but hard to scale,
while controller-based methods require mental mapping of inputs to robot behavior. Non-physical
approaches, though efficient, lack force feedback. Studies such as [16, 22] compare these methods.
In this work, we improve upon the device proposed in [16, 22] for our data collection pipeline.

Pretrained Robot Models Pre-trained foundation models have demonstrated a wide range of
generalization performance across various domains, with the capability to learn from internet-scale
pre-training data [41, 42, 43, 44]. However, in comparison to these vision and language pre-trained
models, learning a robotics foundation model has been considered a relatively challenging area, due
to the limited quantity of available datasets [45, 46, 47, 48], the significant discrepancy across the
domains [49, 50, 15], and the inherently challenging nature of the tokenization of actions [23, 3, 51].

Recent research addresses these challenges by adopting modular and hierarchical systems, incorporat-
ing pre-trained language and visual models [52, 53, 54, 55, 56, 57], and using efficient large-scale data
collection methods [12, 3, 17, 58, 59]. These techniques enhance generalization in pre-trained robot
models, enabling them to operate across different robot embodiments and environments [18, 29, 7, 60].
Unlike these approaches, which rely on fine-tuning models with task-specific data, our project demon-
strates generalizable performance without needing fine-tuning for each new robot or environment.

Large Models Feedback and Improvement Due to their capacity to comprehend intricate se-
mantics and relations, language models, have recently been applied to robotic agents powered by
imitation learning [61, 7, 62, 63] and reinforcement learning [64, 65].

Among the wide capabilities afforded by language models, those commonly employed in the context
of decision-making include providing feedback in the resolution of uncertain information [66, 67,
68, 69, 25, 70, 71] and planning and decompose complex tasks into mid-level plans [72, 73, 74, 75].
Language models could also be used to improve the overall performance of autonomous agent systems
by improving reward signal [76, 65, 77], leveraging their long-horizon reasoning [78, 79, 80], or
designing environments [81]. In this project, we employ the mLLM to provide feedback in the form
of a reset signal in open-ended environments, a manner analogous to that of the studies above.

5 Limitations and Conclusion

While in this work we create Robot Utility Models that can perform particular tasks zero-shot in
novel environments, there are certain limitations that future versions can improve upon. The primary
limitation that we see are of hardware: for example, two-fingered grippers like our data collection
tool are unable to open doors with round doorknobs. Similarly, while flexible fingertips can be more
lenient for the policy, it makes it hard to manipulate heavy objects. We encourage more research
on better gripper and fingertip design to address these issues. Secondly, we assume navigation to
be a separate component, and in this work assume that the robot is in the task space facing the task
objective. Combining with modular navigation work such as [56] should address this issue. Finally,
for mLLM introspection and retrying, we assume that the errors made by our model (a) leaves the
task-space somewhat in-distribution, and (b) allows for an easy reset of the robot to the initial state.
Increasing training data with failure recovery behavior in our dataset should let our robots recover
more naturally from such failure cases.

8

Acknowledgments

We thank Shenglong Wang and the NYU HPC team for helping us with compute, Blaine Matulevic
and Binit Shah for supporting our hardware needs, and Siddhant Haldar and Jeff Cui for providing
feedback on the paper. NYU authors are supported by grants from Honda, Hyundai, NSF award
2339096 and ONR awards N00014-21-1-2758 and N00014-22-1-2773. MS is supported by the Apple
Fellowship. LP is supported by the Packard Fellowship. SL is supported by the Daishin Songchon
Foundation. Hello Robot authors are supported by NIH NIA R43AG072982.

References
[1] T. Z. Zhao, V. Kumar, S. Levine, and C. Finn. Learning fine-grained bimanual manipulation

with low-cost hardware. arXiv preprint arXiv:2304.13705, 2023.

[2] Z. Fu, T. Z. Zhao, and C. Finn. Mobile aloha: Learning bimanual mobile manipulation with
low-cost whole-body teleoperation. arXiv preprint arXiv:2401.02117, 2024.

[3] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, X. Chen, K. Choromanski, T. Ding, D. Driess,
A. Dubey, C. Finn, et al. Rt-2: Vision-language-action models transfer web knowledge to
robotic control. arXiv preprint arXiv:2307.15818, 2023.

[4] S. Haldar, Z. Peng, and L. Pinto. Baku: An efficient transformer for multi-task policy learning.
arXiv preprint arXiv:2406.07539, 2024.

[5] Z. Fu, Q. Zhao, Q. Wu, G. Wetzstein, and C. Finn. Humanplus: Humanoid shadowing and
imitation from humans. arXiv preprint arXiv:2406.10454, 2024.

[6] T. Lin, Y. Zhang, Q. Li, H. Qi, B. Yi, S. Levine, and J. Malik. Learning visuotactile skills with
two multifingered hands. arXiv preprint arXiv:2404.16823, 2024.

[7] M. J. Kim, K. Pertsch, S. Karamcheti, T. Xiao, A. Balakrishna, S. Nair, R. Rafailov, E. Foster,
G. Lam, P. Sanketi, et al. Openvla: An open-source vision-language-action model. arXiv
preprint arXiv:2406.09246, 2024.

[8] A. Mandlekar, Y. Zhu, A. Garg, J. Booher, M. Spero, A. Tung, J. Gao, J. Emmons, A. Gupta,
E. Orbay, et al. Roboturk: A crowdsourcing platform for robotic skill learning through imitation.
In Conference on Robot Learning, pages 879–893. PMLR, 2018.

[9] A. Iyer, Z. Peng, Y. Dai, I. Guzey, S. Haldar, S. Chintala, and L. Pinto. Open teach: A versatile
teleoperation system for robotic manipulation. arXiv preprint arXiv:2403.07870, 2024.

[10] S. P. Arunachalam, S. Silwal, B. Evans, and L. Pinto. Dexterous imitation made easy: A
learning-based framework for efficient dexterous manipulation. In 2023 ieee international
conference on robotics and automation (icra), pages 5954–5961. IEEE, 2023.

[11] X. Cheng, J. Li, S. Yang, G. Yang, and X. Wang. Open-television: Teleoperation with immersive
active visual feedback, 2024. URL https://arxiv.org/abs/2407.01512.

[12] A. Khazatsky, K. Pertsch, S. Nair, A. Balakrishna, S. Dasari, S. Karamcheti, S. Nasiriany, M. K.
Srirama, L. Y. Chen, K. Ellis, et al. Droid: A large-scale in-the-wild robot manipulation dataset.
arXiv preprint arXiv:2403.12945, 2024.

[13] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object
detection and semantic segmentation. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 580–587, 2014.

[14] G. Gkioxari, B. Hariharan, R. B. Girshick, and J. Malik. R-cnns for pose estimation and action
detection. CoRR, abs/1406.5212, 2014. URL http://arxiv.org/abs/1406.5212.

9

https://arxiv.org/abs/2407.01512
http://arxiv.org/abs/1406.5212

[15] A. Padalkar, A. Pooley, A. Jain, A. Bewley, A. Herzog, A. Irpan, A. Khazatsky, A. Rai, A. Singh,
A. Brohan, et al. Open x-embodiment: Robotic learning datasets and rt-x models. arXiv preprint
arXiv:2310.08864, 2023.

[16] N. M. M. Shafiullah, A. Rai, H. Etukuru, Y. Liu, I. Misra, S. Chintala, and L. Pinto. On bringing
robots home. arXiv preprint arXiv:2311.16098, 2023.

[17] H. Walke, K. Black, A. Lee, M. J. Kim, M. Du, C. Zheng, T. Zhao, P. Hansen-Estruch, Q. Vuong,
A. He, V. Myers, K. Fang, C. Finn, and S. Levine. Bridgedata v2: A dataset for robot learning
at scale, 2023.

[18] O. M. Team, D. Ghosh, H. Walke, K. Pertsch, K. Black, O. Mees, S. Dasari, J. Hejna, T. Kreiman,
C. Xu, et al. Octo: An open-source generalist robot policy. arXiv preprint arXiv:2405.12213,
2024.

[19] H.-S. Fang, C. Wang, H. Fang, M. Gou, J. Liu, H. Yan, W. Liu, Y. Xie, and C. Lu. Anygrasp:
Robust and efficient grasp perception in spatial and temporal domains. IEEE Transactions on
Robotics, 2023.

[20] M. Sundermeyer, A. Mousavian, R. Triebel, and D. Fox. Contact-graspnet: Efficient 6-dof
grasp generation in cluttered scenes. In 2021 IEEE International Conference on Robotics and
Automation (ICRA), pages 13438–13444. IEEE, 2021.

[21] J. Mahler, J. Liang, S. Niyaz, M. Laskey, R. Doan, X. Liu, J. A. Ojea, and K. Goldberg. Dex-Net
2.0: Deep learning to plan robust grasps with synthetic point clouds and analytic grasp metrics.
In Robotics: Science and Systems (RSS), 2017.

[22] C. Chi, Z. Xu, C. Pan, E. Cousineau, B. Burchfiel, S. Feng, R. Tedrake, and S. Song. Universal
manipulation interface: In-the-wild robot teaching without in-the-wild robots. arXiv preprint
arXiv:2402.10329, 2024.

[23] S. Lee, Y. Wang, H. Etukuru, H. J. Kim, N. M. M. Shafiullah, and L. Pinto. Behavior generation
with latent actions. arXiv preprint arXiv:2403.03181, 2024.

[24] C. Chi, S. Feng, Y. Du, Z. Xu, E. Cousineau, B. Burchfiel, and S. Song. Diffusion policy:
Visuomotor policy learning via action diffusion. arXiv preprint arXiv:2303.04137, 2023.

[25] Y. Guo, Y.-J. Wang, L. Zha, Z. Jiang, and J. Chen. Doremi: Grounding language model by
detecting and recovering from plan-execution misalignment. arXiv preprint arXiv:2307.00329,
2023.

[26] S. Song, A. Zeng, J. Lee, and T. Funkhouser. Grasping in the wild: Learning 6dof closed-
loop grasping from low-cost demonstrations. IEEE Robotics and Automation Letters, 5(3):
4978–4985, 2020.

[27] S. Young, D. Gandhi, S. Tulsiani, A. Gupta, P. Abbeel, and L. Pinto. Visual imitation made
easy. arXiv e-prints, pages arXiv–2008, 2020.

[28] J. Pari, N. M. Shafiullah, S. P. Arunachalam, and L. Pinto. The surprising effectiveness of
representation learning for visual imitation, 2021.

[29] S. Reed, K. Zolna, E. Parisotto, S. G. Colmenarejo, A. Novikov, G. Barth-maron, M. Giménez,
Y. Sulsky, J. Kay, J. T. Springenberg, T. Eccles, J. Bruce, A. Razavi, A. Edwards, N. Heess,
Y. Chen, R. Hadsell, O. Vinyals, M. Bordbar, and N. de Freitas. A generalist agent. Transactions
on Machine Learning Research, 2022. ISSN 2835-8856.

[30] L. Zhao, T. Yang, Y. Yang, and P. Yu. A wearable upper limb exoskeleton for intuitive
teleoperation of anthropomorphic manipulators. Machines, 11(4):441, 2023.

10

[31] Y. Ishiguro, T. Makabe, Y. Nagamatsu, Y. Kojio, K. Kojima, F. Sugai, Y. Kakiuchi, K. Okada,
and M. Inaba. Bilateral humanoid teleoperation system using whole-body exoskeleton cockpit
tablis. IEEE Robotics and Automation Letters, 5(4):6419–6426, 2020.

[32] H. Fang, H.-S. Fang, Y. Wang, J. Ren, J. Chen, R. Zhang, W. Wang, and C. Lu. Low-cost
exoskeletons for learning whole-arm manipulation in the wild. arXiv preprint arXiv:2309.14975,
2023.

[33] P. Wu, Y. Shentu, Z. Yi, X. Lin, and P. Abbeel. Gello: A general, low-cost, and intuitive
teleoperation framework for robot manipulators. arXiv preprint arXiv:2309.13037, 2023.

[34] B. Liu, Y. Zhu, C. Gao, Y. Feng, Q. Liu, Y. Zhu, and P. Stone. Libero: Benchmarking knowledge
transfer for lifelong robot learning. Advances in Neural Information Processing Systems, 36,
2024.

[35] N. E. Sian, K. Yokoi, S. Kajita, F. Kanehiro, and K. Tanie. Whole body teleoperation of a
humanoid robot development of a simple master device using joysticks. Journal of the Robotics
Society of Japan, 22(4):519–527, 2004.

[36] Z. J. Cui, Y. Wang, N. M. M. Shafiullah, and L. Pinto. From play to policy: Conditional behavior
generation from uncurated robot data. arXiv preprint arXiv:2210.10047, 2022.

[37] S. Yang, M. Liu, Y. Qin, R. Ding, J. Li, X. Cheng, R. Yang, S. Yi, and X. Wang. Ace: A
cross-platform visual-exoskeletons system for low-cost dexterous teleoperation, 2024. URL
https://arxiv.org/abs/2408.11805.

[38] Y. Park and P. Agrawal. Using apple vision pro to train and control robots, 2024.

[39] S. P. Arunachalam, S. Silwal, B. Evans, and L. Pinto. Dexterous imitation made easy: A learning-
based framework for efficient dexterous manipulation. arXiv preprint arXiv:2203.13251, 2022.

[40] S. P. Arunachalam, I. Güzey, S. Chintala, and L. Pinto. Holo-dex: Teaching dexterity with
immersive mixed reality. In 2023 IEEE International Conference on Robotics and Automation
(ICRA), pages 5962–5969. IEEE, 2023.

[41] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint arXiv:1810.04805, pages 4171–4186,
2018. doi:10.18653/v1/N19-1423.

[42] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell,
P. Mishkin, J. Clark, G. Krueger, and I. Sutskever. Learning transferable visual models from
natural language supervision. In International Conference on Machine Learning (ICML),
volume 139, pages 8748–8763, 2021.

[43] A. Dubey, A. Jauhri, A. Pandey, A. Kadian, A. Al-Dahle, A. Letman, A. Mathur, A. Schelten,
A. Yang, A. Fan, et al. The llama 3 herd of models. arXiv preprint arXiv:2407.21783, 2024.

[44] A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson, T. Xiao, S. Whitehead,
A. C. Berg, W.-Y. Lo, et al. Segment anything. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 4015–4026, 2023.

[45] D. Kappler, J. Bohg, and S. Schaal. Leveraging big data for grasp planning. In ICRA, 2015.

[46] S. Levine, C. Finn, T. Darrell, and P. Abbeel. End-to-end training of deep visuomotor policies.
JMLR, 17(1):1334–1373, 2016.

[47] A. Depierre, E. Dellandréa, and L. Chen. Jacquard: A large scale dataset for robotic grasp
detection. In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 3511–3516. IEEE, 2018.

11

https://arxiv.org/abs/2408.11805
http://dx.doi.org/10.18653/v1/N19-1423

[48] X. Zhu, R. Tian, C. Xu, M. Huo, W. Zhan, M. Tomizuka, and M. Ding. Fanuc manipulation:
A dataset for learning-based manipulation with fanuc mate 200iD robot. https://sites.
google.com/berkeley.edu/fanuc-manipulation, 2023.

[49] S. Dasari, F. Ebert, S. Tian, S. Nair, B. Bucher, K. Schmeckpeper, S. Singh, S. Levine, and
C. Finn. RoboNet: Large-scale multi-robot learning. In Conference on Robot Learning (CoRL),
volume 100, pages 885–897. PMLR, 2019.

[50] D. Kalashnikov, J. Varley, Y. Chebotar, B. Swanson, R. Jonschkowski, C. Finn, S. Levine, and
K. Hausman. MT-Opt: Continuous multi-task robotic reinforcement learning at scale. arXiv
preprint arXiv:2104.08212, 2021.

[51] R. Zheng, C.-A. Cheng, H. Daumé III, F. Huang, and A. Kolobov. Prise: Llm-style sequence
compression for learning temporal action abstractions in control. In Forty-first International
Conference on Machine Learning, 2024.

[52] X. Li, M. Liu, H. Zhang, C. Yu, J. Xu, H. Wu, C. Cheang, Y. Jing, W. Zhang, H. Liu, et al. Vision-
language foundation models as effective robot imitators. arXiv preprint arXiv:2311.01378,
2023.

[53] S. Nair, A. Rajeswaran, V. Kumar, C. Finn, and A. Gupta. R3m: A universal visual representation
for robot manipulation. In CoRL, 2022.

[54] S. Karamcheti, S. Nair, A. S. Chen, T. Kollar, C. Finn, D. Sadigh, and P. Liang. Language-driven
representation learning for robotics. Robotics: Science and Systems (RSS), 2023.

[55] N. M. M. Shafiullah, C. Paxton, L. Pinto, S. Chintala, and A. Szlam. Clip-fields: Weakly
supervised semantic fields for robotic memory. arXiv preprint arXiv:2210.05663, 2022.

[56] P. Liu, Y. Orru, C. Paxton, N. M. M. Shafiullah, and L. Pinto. Ok-robot: What really matters in
integrating open-knowledge models for robotics. arXiv preprint arXiv:2401.12202, 2024.

[57] A. Gupta, M. Zhang, R. Sathua, and S. Gupta. Opening cabinets and drawers in the real world
using a commodity mobile manipulator. arXiv preprint arXiv:2402.17767, 2024.

[58] F. Ebert, Y. Yang, K. Schmeckpeper, B. Bucher, G. Georgakis, K. Daniilidis, C. Finn, and
S. Levine. Bridge data: Boosting generalization of robotic skills with cross-domain datasets. In
Robotics: Science and Systems (RSS) XVIII, 2022.

[59] H.-S. Fang, H. Fang, Z. Tang, J. Liu, J. Wang, H. Zhu, and C. Lu. RH20T: A robotic dataset for
learning diverse skills in one-shot. In RSS 2023 Workshop on Learning for Task and Motion
Planning, 2023.

[60] R. Doshi, H. Walke, O. Mees, S. Dasari, and S. Levine. Scaling cross-embodied learning: One
policy for manipulation, navigation, locomotion and aviation. arXiv preprint arXiv:2408.11812,
2024.

[61] D. Fried, R. Hu, V. Cirik, A. Rohrbach, J. Andreas, L. Morency, T. Berg-Kirkpatrick, K. Saenko,
D. Klein, and T. Darrell. Speaker-follower models for vision-and-language navigation. In
Advances in Neural Information Processing Systems 31: Annual Conference on Neural Informa-
tion Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada, pages
3318–3329, 2018.

[62] M. Shridhar, L. Manuelli, and D. Fox. Cliport: What and where pathways for robotic manipula-
tion. In Conference on Robot Learning, pages 894–906. PMLR, 2022.

[63] E. Jang, A. Irpan, M. Khansari, D. Kappler, F. Ebert, C. Lynch, S. Levine, and C. Finn. BC-Z:
Zero-shot task generalization with robotic imitation learning. In Conference on Robot Learning
(CoRL), pages 991–1002, 2021.

12

https://sites.google.com/berkeley.edu/fanuc-manipulation
https://sites.google.com/berkeley.edu/fanuc-manipulation

[64] Y. Du, O. Watkins, Z. Wang, C. Colas, T. Darrell, P. Abbeel, A. Gupta, and J. Andreas. Guiding
pretraining in reinforcement learning with large language models. In International Conference
on Machine Learning, pages 8657–8677. PMLR, 2023.

[65] P. Goyal, S. Niekum, and R. Mooney. Pixl2r: Guiding reinforcement learning using natural
language by mapping pixels to rewards. In Conference on Robot Learning, pages 485–497.
PMLR, 2021.

[66] A. Z. Ren, A. Dixit, A. Bodrova, S. Singh, S. Tu, N. Brown, P. Xu, L. Takayama, F. Xia,
J. Varley, et al. Robots that ask for help: Uncertainty alignment for large language model
planners. arXiv preprint arXiv:2307.01928, 2023.

[67] J. F. Mullen Jr and D. Manocha. Towards robots that know when they need help: Affordance-
based uncertainty for large language model planners. arXiv preprint arXiv:2403.13198, 2024.

[68] W. Huang, F. Xia, T. Xiao, H. Chan, J. Liang, P. Florence, A. Zeng, J. Tompson, I. Mordatch,
Y. Chebotar, et al. Inner monologue: Embodied reasoning through planning with language
models. arXiv preprint arXiv:2207.05608, 2022.

[69] Z. Liu, A. Bahety, and S. Song. Reflect: Summarizing robot experiences for failure explanation
and correction. arXiv preprint arXiv:2306.15724, 2023.

[70] J. Park, S. Lim, J. Lee, S. Park, M. Chang, Y. Yu, and S. Choi. Clara: classifying and
disambiguating user commands for reliable interactive robotic agents. IEEE Robotics and
Automation Letters, 2023.

[71] J. Gao, B. Sarkar, F. Xia, T. Xiao, J. Wu, B. Ichter, A. Majumdar, and D. Sadigh. Physi-
cally grounded vision-language models for robotic manipulation. In 2024 IEEE International
Conference on Robotics and Automation (ICRA), pages 12462–12469. IEEE, 2024.

[72] C. H. Song, J. Wu, C. Washington, B. M. Sadler, W.-L. Chao, and Y. Su. Llm-planner: Few-shot
grounded planning for embodied agents with large language models. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pages 2998–3009, 2023.

[73] W. Huang, P. Abbeel, D. Pathak, and I. Mordatch. Language models as zero-shot planners:
Extracting actionable knowledge for embodied agents. In International conference on machine
learning, pages 9118–9147. PMLR, 2022.

[74] A. Zeng, M. Attarian, B. Ichter, K. Choromanski, A. Wong, S. Welker, F. Tombari, A. Purohit,
M. Ryoo, V. Sindhwani, et al. Socratic models: Composing zero-shot multimodal reasoning
with language. arXiv preprint arXiv:2204.00598, 2022.

[75] P. Sharma, A. Torralba, and J. Andreas. Skill induction and planning with latent language. arXiv
preprint arXiv:2110.01517, 2021.

[76] S. Nair, E. Mitchell, K. Chen, S. Savarese, C. Finn, et al. Learning language-conditioned robot
behavior from offline data and crowd-sourced annotation. In Conference on Robot Learning,
pages 1303–1315. PMLR, 2022.

[77] Y. J. Ma, W. Liang, G. Wang, D.-A. Huang, O. Bastani, D. Jayaraman, Y. Zhu, L. Fan, and
A. Anandkumar. Eureka: Human-level reward design via coding large language models. arXiv
preprint arXiv:2310.12931, 2023.

[78] M. Dalal, T. Chiruvolu, D. Chaplot, and R. Salakhutdinov. Plan-seq-learn: Language model
guided rl for solving long horizon robotics tasks. arXiv preprint arXiv:2405.01534, 2024.

[79] H. Zhou, M. Ding, W. Peng, M. Tomizuka, L. Shao, and C. Gan. Generalizable long-horizon
manipulations with large language models. arXiv preprint arXiv:2310.02264, 2023.

13

[80] V. Blukis, C. Paxton, D. Fox, A. Garg, and Y. Artzi. A persistent spatial semantic representation
for high-level natural language instruction execution. In Conference on Robot Learning, pages
706–717. PMLR, 2022.

[81] Y. J. Ma, W. Liang, H.-J. Wang, S. Wang, Y. Zhu, L. Fan, O. Bastani, and D. Jayaraman.
Dreureka: Language model guided sim-to-real transfer. arXiv preprint arXiv:2406.01967, 2024.

14

A Appendix

A.1 Transferring RUMs to different embodiments

Robot arm with 6D pose & position control

Wrist mounted camera

Flexible fingers

Hello Robot: Stretch UFactory xArm 7
(Default gripper) (Custom gripper)

Chart 1

Su
cc

es
s

ra
te

 (%
)

0

25

50

75

100

Tissue pick up Bag pick up

7670
8480

Hello Robot: Stretch UFactory xArm 7

Table 1

Hello Robot: Stretch UFactory xArm 7

Tissue pick up 80 70

Bag pick up 84 76

1

Figure 8: Performance of RUMs without corrections on different embodiments: RUMs can transfer
to different embodiments with minimal loss in performance.

We investigate the ability of RUMs to be transferred to different embodiments and cameras. We test
the performance of two RUMs on another robot setup: UFactory xArm 7, which is different from
the Hello Robot Stretch setup we run other experiments on. We see that RUMs can be transferred
to different embodiments and cameras with minimal loss in performance: roughly 10% drop in
performance in both cases without corrective mLLM feedback, as shown in Figure 8. We expect
combining RUMs with the mLLM self-critique would result in similar increase in performance in
other embodiments as well; in fact, with an external third person camera, we expect to see a higher
portion of the errors being caught and corrected. This experiment implies that RUMs can be easily
deployed on different robots and cameras with minimal effort, making it a versatile tool for a wide
range of robotic applications.

A.2 Evaluation of Data Quality

Su
cc

es
s

ra
te

 (%
)

0

25

50

75

100

Door opening Object reorientation

18

64 68
76

Diverse data 
(25 demo/env)

Uniform data 
(200 demo/env)

Table 1

Diverse data Concentrated data Co-training Drop

Door opening 76 64 76 12

Object reorientation 68 18 34 50

0

25

50

75

100

Door opening Drawer opening

34

76 76

52

32
22

Non-expert data Expert data Co-training

1

Figure 9: Understanding the importance of different qualities of data in training RUMs. On the left,
we see that diverse datasets are more valuable than more uniform datasets, with strong effects on
the reorientation task with many unseen environments and object. On the right, we see that usually
expert data is more valuable than non-expert or play data while learning behavior on a same sized
dataset. Moreover, we see that co-training with expert data and play data may sometimes reduce the
policy performance, contrary to common knowledge.

A.3 Detailed Results from Experiments with Self-critique and Retrying

15

Task Environment/Object Success ·/10
Door Opening Kitchen Trash Door 7

Kitchen Cabinet Door 10
Brown Cabinet Door 10
Metal Cabinet Door 10
White File Cabinet Door 10

Drawer Opening Kitchen Drawer 10
Cloth Drawer 9
White File Cabinet Drawer 10
Small File Cabinet Drawer 10
Dresser Drawer 8

Bag Pick Up Hollister Bag 9
American Eagle Bag 10
Qdoba Bag 8
Journey’s Bag 9
Yellow Bag 6

Tissue Pick Up White Tall Box 10
White Short Box 10
Black Square Box 9
Red Square Box 10
Kleenex Box 7

Object Reorientation Pink Bottle 9
White Board Cleaner 8
Spices Container 8
Coke Can 8
Compressed Air 10

Table 1: Detailed success statistics of RUMs on our evaluation environments.

A.4 Evaluation Environments

16

Reorientation environments

Drawer opening environments

Door opening environments

Figure 10: Picture of evaluation environments for the tasks Reorientation, Drawer opening, and Door
opening.

A.5 Multimodal Large Language Model Prompts for Success Verification

Here, we present the prompt that we use to verify RUMs success with mLLMs.

Door Opening

As the timesteps progress, does the robotic arm open the door AND is
the robot arm grasping the handle in the LAST timestep?
Please respond with only ’Yes’ or ’No’.

17

Tissue pick up environments

Bag pick up environments

Figure 11: Pictures of the evaluation environments for the task Tissue pick up and Bag pick up.

Drawer Opening

As the timesteps progress, does the robotic arm grasp the drawer handle
and open it AND is the drawer open in the last timestep?
Please respond with only ’Yes’ or ’No’.

Reorientation

As the timesteps progress, does the robotic arm/gripper reorient the
object upright AND is the object upright in the LAST frame?
Please respond with only ’Yes’ or ’No’.

Tissue Pick-Up

As the timesteps progress, does the robotic arm/gripper grasp the tissue
AND is the gripper grasping the tissue in the LAST timestep?
Please respond with only ’Yes’ or ’No’.

18

Bag Pick-Up

As the timesteps progress, does the robotic arm/gripper grasp the bag
AND is the gripper grasping the bag in the LAST timestep?
Please respond with only ’Yes’ or ’No’.

A.6 Evaluation Schedule

In Figure 12, we show the starting position of the robot for our 10-run evaluations to understand the
positional generalization capabilities of Robot Utility Models.

Figure 12: 10-run evaluation schedule used to evaluate Robot Utility Models, with robot starting
positions denoted by the pale blue dots in the image. We assume that the robot is at the task space
facing the object, but it can be at different offsets with respect to the target object. On our object
centric tasks (reorientation, bag and tissue pickup) we also randomize the position of the object itself.

A.7 Bill of Materials

Here, we present the bill of materials for our hardware components, assuming that the interested
researcher or user owns an iPhone Pro already. The total cost comes out to be slightly below $25 for
the entire setup.

Item Price Unit Price Qty
Reacher Grabber Tool 26.99 13.50 1
Brass Tapered Heat-Set Inserts 21.82 0.22 3
Thread-Forming Screws 7.75 0.31 3
Button Head Screw - M4 x 0.70 - 8mm 12.91 0.13 1
Button Head Screw - M4 x 0.70 - 5mm 8.64 0.09 2
Button Head Screw - M4 x 0.70 - 35mm 16.77 0.34 2
Nylon-Insert Locknut 5.57 0.06 2
Dowel Pin 16.09 0.32 3
Nylon Unthreaded Spacer 18.41 0.18 2
Kevlar Cord 20.99 20.99 1/100
Heat Shrink Tubing 10.79 10.79 1/30
Black 3D Printer Filament 25.99 25.99 3/20

Total 21.99
Table 2: Tool Main Body

19

Item Price Unit Price Qty
Socket Head Screw - M3 x 0.5mm - 8mm 12.52 0.13 2
Steel Hex Nut - M3 x 0.5mm 2.62 0.03 2
M3 Steel Washer 2.19 0.02 2
Red 3D Printer Filament 25.99 25.99 3/1000
Oomoo 25 Silicone Rubber 33.99 33.99 1/200

Total 0.61
Table 3: Gripper Tips

Item Price Unit Price Qty
Socket Head Screw - M5 x 0.8mm - 20mm 17.10 0.17 1
Socket Head Screw - M5 x 0.8mm - 50mm 4.26 0.85 1
Steel Hex Nut - M5 x 0.8mm 5.24 0.05 2
Button Head Screw - M4 x 0.70 - 8mm 12.91 0.13 1
Black 3D Printer Filament 25.99 25.99 3/20

Total 2.03
Table 4: Phone Holder

A.8 Deploying on Stretch’s Default D405 Camera

Deploying our Robot Utility Models on the standard Hello Robot Stretch SE3 requires normalizing
the image coming out of the default Intel Realsense D405 wrist camera. We created an affine
transformation that maps the D405 image to the same pixel coordinates as the iPhone camera.

iPhone Pro Intel Realsense D405 
(with affine transform) iPhone Pro Intel Realsense D405 

(with affine transform)

Long range Short range

Figure 13: We can see the corresponding D405 camera image alongside the iPhone Pro image. While
in the long range, the images look similar, in the short range iPhone images are out of focus because
of the different focal lengths of the cameras.

As we can see from Figure 13, applying the affine transform to the D405 camera maps it to pretty
similar viewpoint as the wrist mounted iPhone. While we can run RUMs directly with this camera
transform, we see a performance drop which we hypothesize happens because of the especially
apparent difference in close-range. This difference is caused by the different focal lengths of the two
cameras, and may be solved in the future with image augmentations.

20

A.9 Failure Modes

Reorientation failure: dropped bottle o! the table, retry impossible

Tissue pick up failure: picked up tissue, pulled box o! the table

Tissue pick up failure: picked up tissue AND the box

Figure 14: Examples of some failures in real world rollouts. Since RUMs retries on failure with
mLLM feedback, the failure modes tend to be peculiar, some examples of which are shown here.

As we mention in the main paper, with mLLM guided retries, our failures tend to be more peculiar
than simply “robot failed to complete task”. In this section, we try to shine some light on what kind
of failures we experience in our system.

• Reorientation: Primary failure modes for this task are when retry becomes impossible because
of environmental issues, such as the target bottle rolling away on the table, being dropped off the
surface (an example of which is shown on the Figure 14), pushing it too far into the table (to a
position too far for our robot arm), or being rotated sideways by the gripper before grasping. In
out-of-distribution surfaces, it can be hard to estimate how large the surface is visually and thus
placing the object after reorientation may miss the surface or the robot may run into the surface.

• Drawer opening: Beyond the most direct failure mode of missing the drawer handle, we experi-
enced some failure modes where the model does not know when to stop pulling on cloth drawers
and thus pulls out the entire drawer. Without force feedback, it can be hard to tell visually when the
drawer starts sagging. Force feedback on the fingertips would help the robot correct for it.

• Door opening: Here, the primary failure mode we experience are on unusual doors, such as the
trash cabinet door with a hole in it. There, GPT sometimes classifies the door as “open” even when
it is closed. In some rare cases, when door handles are close together, the robot may grasp around
both handles and fail to reset as it gets stuck when retracting.

• Tissue pick up: The tissue box itself being light and easy to move means that sometimes the box
moves with the tissue as its being picked up. As a result, the box may get picked up with the tissue,
or get pushed off from its table by the robot (Figure 14.)

• Bag pick up: The case of bag picking up is interesting because it has one of the highest success
rates from the raw RUM policy but also sees the smallest improvement (4%) from GPT feedback.
This failure from mLLM feedback happens usually because from the robot wrist or head camera,

21

it can be hard to tell whether the bag has been picked up. As a result, GPT tends to have a high
number of false positives for this task. Having a better third-person view of the workspace should
help address this issue.

22

	Introduction
	Robot Utility Models
	Data collection tool
	Collected datasets
	Model training
	Retrying with GPT-4o feedback
	Deployment Details

	Capabilities of Robot Utility Models
	Zero-shot evaluation of RUMs on unseen environments
	Effect of policy architecture and training on RUMs
	Effect of scaling datasets on RUMs
	Importance of data diversity in training RUMs
	Impact of expert demonstrations on training policies
	Effects of introspection and retrying with self-critique

	Related Works
	Limitations and Conclusion
	Appendix
	Transferring RUMs to different embodiments
	Evaluation of Data Quality
	Detailed Results from Experiments with Self-critique and Retrying
	Evaluation Environments
	Multimodal Large Language Model Prompts for Success Verification
	Evaluation Schedule
	Bill of Materials
	Deploying on Stretch's Default D405 Camera
	Failure Modes

