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Abstract: Recent advancements in Generative AI, particularly in Large Language
Models (LLMs) and Large Vision-Language Models (LVLMs), offer new possi-
bilities for integrating cognitive planning into robotic systems. In this work, we
present a novel framework for solving the object goal navigation problem that
generates efficient exploration strategies. Our approach enables a robot to navi-
gate unfamiliar environments by leveraging LLMs and LVLMs to understand the
semantic structure of the scene. To address the challenge of representing com-
plex environments without overwhelming the system, we propose a 3D modular
scene representation, enriched with semantic descriptions. This representation
is dynamically pruned using an LLM-based mechanism, which filters irrelevant
information and focuses on task-specific data. By combining these elements, our
system generates high-level sub-goals that guide the robot’s exploration toward the
target object. We validate our approach in simulated environments, demonstrat-
ing its ability to enhance object search efficiency while maintaining scalability in
complex settings. Video Demonstration : https://youtu.be/pvr1uaObL9M
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Figure 1: Overview of our framework with Homerobot Strech in Habitat simulation environment.
The Robot in this episode is tasked to find a pillow. The agent, after considering all the objects in
the scene (3D scene modular representation), decides to explore near the couch to find the pillow.

1 Introduction

Navigation in an unfamiliar environment to search for an object described in natural language is one
of the most challenging problem in robotics [1, 2]. Even though these kind of task comes as second
nature for us humans, the underlying process is really complex as it involves cognitive processing,
using long term memory and experiences, and integrating the current sensory information with these
processes. Achieving this with robots involve designing a language conditioned high-level planner
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[3] that understands the semantic priors of this world and is able to devise intelligent sequential
plans to efficiently explore the scene in search of the object. This is the core of an object goal
navigation task. The agent, similar to a human being, must also have a cognitive high level-planner
that can understand the semantic cues of our world, a low-level planner that can leverage on long
term memory and experiences to act on the environment and an episodic memory to save critical
information related to the current task.

Large Language Models (LLMs) and Large Vision Language Models (LVLMs) have shown the
capability to comprehend the semantic priors of the world and reason about them from this under-
standing. This makes them an ideal candidate for a high level planner, that can take an action by
reasoning about the scene. To plan efficiently in an environment by taking into account the un-
derlying details of the scene, the agent should be provided with an efficient representation of the
scene which is rich in semantic information but yet not overwhelmed with a mass of indistinguish-
able stimuli. Human beings, when exploring an unknown environment to find an object without a
comprehensive map of the environment, follows a goal oriented approach in storing data [4]. This
process involves a combination of Perception which process the incoming information, Attention
which directs our focus to specific cues in the scene and memory which selectively encodes infor-
mation that is perceived as important for achieving a specific goal. This aids in efficient use of
cognitive resources and effective retrieval of this information when needed. This goal oriented ap-
proach enhances the chances of us finding the target object. We mimic this goal oriented approach
with robots by using a combination of an Large language model for attending to relevant aspects,
an large vision language model and an open-vocabulary image segmentation module for perceiving
and processing the incoming information, and a 3D scene modular representation and a short term
memory module for saving the processed information to memory.

The agent when exploring the scene, procedurally builds a modular 3D scene representation, by us-
ing the processed information from the perception module. The 3D scene representation has nodes
corresponding to objects of relevance in the scene, the relevancy of which is decided by a Large Lan-
guage Model. The 3D scene representation generated is generally sparse, but becomes denser in the
vicinity of the detected target object. This sparse to dense structure in encoding information mirrors
the human cognition in strategically encoding information in a goal oriented task. The perception
module involves an open vocabulary segmentation module which is responsible for identifying and
segmenting all the objects in the scene and a Large Vision Language model used for describing the
identified objects in natural language. This natural language description have details like the appear-
ance of the object, the objects near it and the possible room this object is in. This information helps
the high level planner to plan more effectively. The short term memory module temporarily holds
and manipulate information needed for generating inferences about the target object.

2 Related works

2.1 LLM as a planner

Large language models (LLMs) with billions of parameters, trained on massive scale datasets have
shown impressive generative capabilities with a generalized semantic understanding of the world.
Many works like Huang et al. [5], Ding et al. [6], Song et al. [7], Lin et al. [8], Huang et al. [9], Ahn
et al. [10] focused on grounding LLMs for high-level task planning with natural language task
representation. Huang et al. [9] worked on grounding high-level tasks expressed in natural language
and decomposing them into low level plans and admissible actions. Ahn et al. [10] focused on
grounding an LLM that provides high-level procedures for task completion, with value functions
associated with these tasks.

2.2 Open Vocabulary Image Segmentation

Open vocabulary image segmentation refers to the recognition and delineation of an open category
of objects in a frame. The flexibility of such a system to identify and segment objects forms a
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critical part in building an efficient representation of the scene. With the advent of powerful object
detection and segmentation models like Kirillov et al. [11], Wang et al. [12], He et al. [13], Zhou
et al. [14], Zhao et al. [15], Ren et al. [16], Liu et al. [17], the agent can detect and segment the
objects in the scene. Many open vocabulary segmentation modules like Zhou et al. [14], Ren et al.
[16], Kirillov et al. [11] require the labels of the objects to perform instance segmentation. Image
tagging models like Zhang et al. [18] can recognize the objects in a scene and return their labels,
which can be used as text prompt to these models.

2.3 Representating the environment for task planning

Prior works like Gu et al. [19], Chen et al. [20], Huang et al. [21], Chaplot et al. [22], Zhang et al.
[23], Chen et al. [24] focused on building efficient representations of the environment to facilitate
downstream task planning. The representations generated can be used for understanding the se-
mantics of the scene, thus allowing the agent to query the environment for an object using natural
language Gu et al. [19], Chen et al. [20] and generate task level plans Rana et al. [25], Chen et al.
[20] or low-level actions Chen et al. [24]. Even though many scene representations like Chaplot et al.
[22], Chen et al. [24] have created a scalable and efficient representation that can be used for navi-
gation, it lacks contextual information about the scene, which is invaluable when exploring a scene.
Scene representations like Gu et al. [19], Chen et al. [20] have a really dense representation, which
is often not required when exploring an unfamiliar environment in search of a target object Go. Our
present research is inspired by the human way of cognition with an affordance based memory that
attends and stores only those information which are relevant to the task at hand. We leverage on the
ability of In-context learning in LLMs to prune out irrelevant information and then using an LVLM
to reason about the relevant pruned list of objects, thus creating a sparse as well as information rich
representation of the environment. The scene representation near the target object Go is made denser
so as to facilitate further downstream task planning like manipulation of the object.

2.4 Object goal navigation

Object goal navigation task involves finding a target object Go in an unfamiliar environment. Ef-
ficient exploration through the environment requires deep understanding of semantic priors of the
world. Prior works like Chaplot et al. [22], Al-Halah et al. [26], Mousavian et al. [27], Chang et al.
[28], Liang et al. [29], Wu et al. [30] tried to learn these semantic cues from egocentric RGB and
depth images Al-Halah et al. [26], Mousavian et al. [27], semantic map Chaplot et al. [22] and even
from YouTube videos Chang et al. [28]. These learned semantic cues might not generalize well to
new unseen environments. Al-Halah et al. [26] focused on using a modular transfer learning model
to generalize the learned policy for a particular task to multiple tasks and Wortsman et al. [31] used
meta learning to generalize to unfamiliar environments. LLMs on the other hand exhibit extraordi-
nary contextual awareness and ability to understand the semantic cues of our world. We leverage on
this capability to efficiently explore unseen environments for the target object Go.

Recent works like Rajvanshi et al. [32], Dorbala et al. [33], Shah et al. [34] have leveraged the ca-
pability of LLMs to understand the semantic priors for object goal navigation tasks. Rajvanshi et al.
[32] leveraged the planning capabilities of LLMs to devise a sequential plan that includes point goals
and target state information for executing multiple object goal navigation tasks in parallel. These
point goals generated by an LLM is fulfilled through a low level(execution level) controller. Shah
et al. [34] focused on using the semantic predictions from LLMs as a heuristic for a frontier based
exploration strategy to find the target object Go. Dorbala et al. [33] focused on solving language-
driven zero-shot object goal navigation problem Majumdar et al. [35] by using an LLM to navigate
to the target object Go, given a natural language description of it.

Most of these approaches either focuses on building a semantically rich map by exploring the envi-
ronment first, and then utilizes a policy to navigate on top of this representation or have a procedu-
rally built semantic map which lacks rich semantic information but is built on the fly and a policy
trained on top of this, which learns the semantic priors of the world. Such policies, especially those
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Figure 2: Architecture of the proposed pipeline.The agent explores the environment and collects
observations (RGBD image and Pose). An open-vocabulary segmentation module is used to identify
the objects in the current frame. Pruner takes in these detected segments and prunes out unwanted
segments. The pruned segments are either initialized as a new node in the 3D scene representation
or merged with an existing one, based on a similarity criteria. All new nodes are captioned with
LLaVA, to provide semantic information to the LLM based planner. The agent then chooses a
node to explore closer, to find the target object Go. While doing so, the agent stores frame wise
information in the short term memory module. If the agent decides that no objects in the 3D scene
representation has a good chance of finding the target object Go closer to it, it continues to explore
the scene and build the 3D scene representation.

trained on simulators lack generalization capabilities. We utilize the generalization capabilities of
foundational models to understand and reason about the context through natural language, to proce-
durally build a 3D modular representation which encodes rich semantic data, and generate plans for
an object goal navigation task.

3 METHOD

An overview of our approach is given in figure 2. The agent receives RGB image, depth image, base
and camera pose as inputs in every timestep. An open vocabulary semantic segmentation module
identifies objects in the RGB image and generates mask for the same. LLM acting as a pruner
identifies the most important objects in the scene in regards to their utility in understanding the
semantic priors of the environment and prunes the remaining detections. These detected segments
are then converted into a 3D scene representation, where each object is signified by a node. An
object node stores information regarding the position of the object, pointcloud, frame in which this
object was detected, mask and label of this object in that frame, and a semantic description of the
object in the scene. LLM, grounded for an object goal navigation task, uses the 3D scene modular
representation to decide whether to continue exploring the environment or to move closer to an
already detected object in the scene that has a high probability of finding the target object Go. The
agent triggers its short term memory module and stores information for every frame if it decides to
explore closer to an object. Upon reaching the object, the agent utilize the detections from the short
term memory, to construct hypotheses regarding the target object.

3.1 Open vocabulary image segmentation

The open vocabulary segmentation module segments the RGB frame It at the current timestep t,
given the natural language description of the object. Given an RGB image It of the scene, we
use a combination of Recognize anything model(RAM) Zhang et al. [18], Grounding Dino and
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FastSAM Ren et al. [16] for open vocabulary semantic segmentation. RAM is a strong foundational
model used for image tagging, it is tasked with finding the object tags cit in the scene. The set of
object tags Ct = (c1t , c

2
t , ..., c

m
t ) is then passed as a text prompt Tt (= Ct) to Grounding-Dino Liu

et al. [17], which detects the presence of classes Ct in the scene. Grounding-Dino returns the class
labels (l1t , l

2
t , ..., l

m
t ) of objects in the scene, confidence of the predictions (p1t , p

2
t , ..., p

m
t ) and their

bounding boxes (b1t , b
2
t , ..., b

m
t ). The detected classes in the scene (l1t , l

2
t , ..., l

m
t ) are then passed

as box prompt (b1t , b
2
t , ..., b

m
t ) through FastSAM Zhao et al. [15] to get their corresponding masks

(m1
t ,m

2
t , ...,m

m
t ).

3.2 LLM as a pruner

We leverage the In-context learning abilities of an LLM to prune the detected class labels
(l1t , l

2
t , ..., l

m
t ) generated by the open vocabulary segmentation module for the timestep t. In-context

learning is a paradigm that empowers pre-trained LLMs to ground to a particular task without fine-
tuning the model, by providing the LLM with task level demonstrations along with the prompt. The
language model here is provided with task-specific examples containing a pair of input Pi and out-
put Po object sets. The input set Pi contains class labels (l1, l2, ..., lm) and the output set Po(⊆ Pi),
contains those objects that have a higher utility when it comes to understanding the semantic priors
of the scene. The text prompt provided to the LLM to achieve this behaviour is given in fig ??.

3.3 3D scene modular representation

The pruned semantic masks (m1
t ,m

2
t , ...,m

m
t ) and labels (l1t , l

2
t , ..., l

m
t ) from the open vocabulary

segmentation module, along with the depth image IDt and camera pose Pt in the current time step t
are used to generate 3D object nodes (Nc1, Nc2, ..., Nck) for each object Oi in that frame (It, I

D
t )

using a modified concept graphs pipeline Gu et al. [19]. In concept graphs, the 3D object nodes Nci

in the scene representation are fused from multiple views considering their spatial overlap, using
an object association strategy that compares the semantic and visual similarity of these objects.
Merging objects from different frames often creates conflicts in class labels, as the object segment
can be associated with different class labels in different frames. We propose to use a Large Vision
Language Model (LVLM) to resolve this conflict. The LVLM is tasked to find the class label that
best suits the object detected, by giving it a cropped image of the detected object and the conflicting
class labels.

Considering an object goal navigation task, where the agent is tasked to find a target object Go in
the scene, further pruning of the concept graphs representation considering the utility of objects, in
the regions not in the immediate relevant environment of the target object Go, so as to generate a
really sparse representation will improve scalability, which enables the system to handle larger and
more complex environments without a proportional increases in computational or memory require-
ments. But having a sparse representation around the target object, constrains the agent in generating
downstream plans for manipulating this object. To resolve this, the agent is conditioned to generate
a really dense and semantically rich representation around the target object Go which will enable
the agent to execute downstream planning and manipulation tasks.

The object nodes generated are captioned using an LVLM in order to extract more information
regarding the semantics of the object. Node captioning system in concept graphs is done while
generating the scene graph, after construction of the entire 3D scene representation. This restricts
the robots in fully utilizing the information while generating plans to explore the environment. But
generating captions on the fly utilizes a lot of compute power, thus slowing down the robot by a
considerable factor. To resolve this, the agent is tasked to caption nodes only when the action at the
current timestep is < explore scene >, i.e. the agent captions the node in every timestep, until it
selects an object to explore further. In the phase where the agent explores towards a selected object
(action =< explore obj >), it saves all the relevant information regarding objects. The agent
processes this information and generates captions for the object nodes at the end of this phase which
is indicated when the robot reaches the selected object node.
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(a) Prompt to LLM for pruning the detections (b) Prompt to LLM for planning.

3.4 LLM as a planner

LLM, grounded in the current task using task level description of the scene is used to generate a high
level plan for the agent. Given the current objects in the environment (objects in the constructed 3D
scene representation (Nc1, Nc2, ..., Nck)) and the generated descriptions for these object nodes, the
LLM is tasked to identify whether to continue exploring the environment randomly and build up the
3D scene representation, or to explore the regions closer to an object node Ncj . If the LLM decides
to explore the scene more, then action is set to < explore scene > and if it believes that there
is a high chance of finding the target object Go near any of the detected objects, then action is set
to < explore obj >. This ability of an LLM to extract semantic relationships between the target
object Go and objects in the scene (Nc1, Nc2, ..., Nck) helps the agent to explore efficiently in the
environment. The text prompt provided to the LLM to achieve this behaviour is given in fig ??.

3.5 Short term memory(STM) and reasoning

Short term memory(STM) is a temporary storage module for holding and manipulating informa-
tion amidst task execution. This working memory module is triggered when the action is set to
< explore obj >. The agent stores processed information (inference by the open vocabulary seg-
mentation module and segment in that frame which contributed to object nodes in the 3D scene
representation) for all the frames and holds it, until it has completely explored near an object. Hav-
ing a short term memory (temporary) oven an long term or permanent memory reduces memory
constraints and increases the scalability of the architecture.

Upon reaching the target object, the agent pans around its axis to collect information regarding the
scene, which is processed by the segmentation module primed with the target object. This generates
all the possible segments that can be regarded as the target object. The agent then retrieves all the
frames in the short term memory, from which these segments are visible, thus generating different
views for the same detected segment. This is done by finding the spatial overlap of pointclouds
between the segment of interest and the objects from frames stored in the short term memory.

The agent then tasks an LVLM (LLaVA Liu et al. [36, 37]) to verify whether the detected segment
in all the views is the target object or not. The determination of whether the detected segment
represents the target object Go relies on the percentage of frames (different views) in which the
LVLM (LLaVA) confirms the presence of the target object, serving as the decisive criterion for the
final decision. If none of the detected segments are regarded as the target object then the current
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object selected for exploring is set to explored, the short term memory is cleared and the agent’s
action is set to < explore scene >.

3.6 Execution level planner

We make use of a goal oriented and episodic semantic mapping module Chaplot et al. [22], to build
an episodic 2D scene obstacle map, frontier map and a goal map. In the phase where action is
< explore scene >, the goal map is same as that of the frontier map and when the action is
< explore obj >, the goal map is constructed in such a way that the robot can navigate to a region
close to the object selected by the LLM. The goal map and the obstacle map is then parsed to a fast
marching method planner, which plans execution level actionable sub-goals to reach the goal.

4 EXPERIMENT AND RESULTS

We evaluate our stack to explore for a target object by building a 3D scene representation of the
environment on the HomeRobot: Open Vocabulary Mobile Manipulation Yenamandra et al. [38]
simulation benchmark. This simulation benchmark have multi-room realistic environments, with a
diverse and complex set of receptacles (eg: chair, table, couch, bed, toilet etc.) and articles (eg: pen,
book, cellphone, tray, apple etc.) that can be manipulated.The environments, designed in Habitat
Puig et al. [39], Szot et al. [40], Savva et al. [41] provide a cluttered and navigable scene having
multiple rooms with manipulable objects placed on top of receptacles, to test various benchmarks
related to navigation and manipulation of objects in unfamiliar environments. We chose this dataset
over conventional object-nav datasets and benchmarks, because of the availability of a wide range of
small objects, that are manipulable. The main focus of our work is to explore for these manipulable
objects. However, the dataset provided by this benchmark does not consider the general semantics
of the world while spawning objects on top of receptacles. For example, there is an episode in this
dataset that spawns in an apple on top of a toilet. We went through the dataset and curated custom
episodes that follow these semantics to test the stack.

We test our stack for exploration by spawning the robot in a random location in the scene and asking
it to find the target object within 500 steps. We evaluate the agents performance in navigating to the
target object by considering success rate (SR) and success rate weighted by path length (SPL) which
indicates the efficiency of the planner. The focus of our approach is in creating a planning pipeline
that mimics human cognition in the way we perceive, store, express and regulate information. To test
the efficacy of the approach compared to human level cognition, we tasked a set of random human
volunteers to find the target object, for the same set of episodes that were given to the LLM based
planner and measured the success rate (SR) and the success rate weighted by path length (SPL). The
results of the experiments involving human and LLM agent is given in table 1.

Table 1: Experimental results
AGENT SR SPL
Human 0.9375 0.759
GPT-4 0.4375 0.272

GPT-3.5 Turbo 0.0 0.0

Table 2: Ablation analysis
AGENT SR SPL
GPT-4 0.437 0.272

GPT-4 w/o STM 0.125 0.089
GPT-4 w/o pruner 0.182 0.113

GPT-4 w/o captions 0.364 0.225

5 DISCUSSION

5.1 Comparison with human cognition

Experimental results from table 1, shows the comparison between human agent and LLM agent in
completing an object goal navigation task. Although GPT-4 based agent’s performance is far from
human level performance, it has exhibited a similar thought process in exploring near certain objects
in the scene, for finding the target object Go. GPT-3.5 on the other hand failed to reason in most of
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the episodes, leading to an inefficient and meaningless exploration of the scene. Most of the failure
scenarios with GPT-3.5 was when it failed to find the target object within the 500 step limit.

5.2 Ablation studies

To signify the importance of having a short term memory based inference module, object captioning
module and a detection pruner, we performed ablation analysis with these, the results of which are
presented in table 2.

GPT-4 with the short term memory(STM) based inference module, more effectively identified the
target object Go, when compared to the agent without this module. The strategy of finding the
same detected segment from multiple views, already encountered while exploring and constructing
a hypothesis from these views, improved the agents performance in identifying the target object.
Comparing with an agent with STM, Most of the failure scenario for the agent without STM was
due to false positive detection of target object Go, leading to premature termination.

LLM based pruner is tasked to prune out smaller objects in an environment like pen, book, pillow
etc, and keep object like chair, kitchen table, bed etc, which are important in understanding the
semantics of the scene. By not doing so, the agent is flooded with a lot of redundant information,
which can lead to inefficient plans. Table 2 shows the performance of the agent without the pruner.
The agent without a pruning module engages in a lot of inefficient exploration, which can be seen
with the reduced SPL, when compared to an agent with pruner.

Captioning nodes can capture a lot of semantic information, which can increase the efficiency of the
planner. GPT-4 based agent, provided with captions performed better at reasoning about the target
object Go being near certain objects in the scene, leading to a more optimal path when compared
to the case when the agent was only provided with the object names. Object captions can capture
the semantic differences between objects of the same label. For example, the chance of finding an
apple is more near a table in the kitchen than in the bedroom. Compared to the agent that had access
to object captions, most of the failure scenarios transpired when the agent was not able to find the
object within the 500 step limit. This can be attributed to the inefficient exploration due a lack of
semantic understanding of the scene.

5.3 Limitations

Regardless of its capabilities, this framework possesses certain limitations, with object detection and
segmentation being the most critical among them, creating false positive detection of objects. An-
other limitation was with the object captioning system, which often lead to exploration of unwanted
objects. This can be attributed to the current limitations of LVLMs like LLaVA. Using a proprietary
LLM like GPT-4 has a lot of challenges associated with it like the economic cost and slower control
loop as its a cloud hosted model.

6 CONCLUSION

In this paper we introduced a framework to tackle the object goal navigation problem, by leveraging
the generalization and semantic reasoning capabilities of Large Language Models and Large Vision
Language Models to generate intelligent plans, by utilizing an efficient 3D scene representation of
the environment. Future works may also explore the use of a more efficient representation, which
the agent can use to reason about the environment.
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7 SUPPLEMENTARY MATERIAL

7.1 SHORT TERM MEMORY

When the agent chooses a node in the 3D scene representation to explore, It starts storing frame-
wise data (RGBD image and processed segments from the open vocabulary object detector). If the
agent detects the presence of the target object in a frame, then it finds all other views stored in
the memory, from which this segment of the target object was visible. This is done by computing
the spatial similarity (overlap between the pointcloud of detected object and all the segments in
the memory). A LVLM is then tasked to reason the presence of the target object in all the retrieved
frames. We use this reasoning to decide whether it is true or false detection. When the agent chooses
a new node to explore, the current data stored in the short term memory is cleared.

Figure 4: Examples of frames retrieved from the short term memory module, in which the target
object is detected. The top 8 frames corresponds to those in which the target object orange was
visible and the bottom 8 frames have the target object soda can visible in them.

7.2 PRUNING

The pruner decides the abstraction level in which the planning occurs. For example, suppose we
need to find an apple in an unseen environment. We can choose to represent the environment around
us in different levels of abstraction, from room name to small objects like book. This representation
will affect the quality of plans that we make to find apple. The task of the pruner is to provide
an object level abstraction for the LLM based agent to plan a task. The pruner retains objects like
computer table, chair, kitchen table, bed, cabinet and so on. To find an object like apple, the agent
can choose to explore closer to one of these objects, in this case the kitchen table. Pruning is done
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with the help of incontext learning in LLMs. We provide a series of examples to LLM, that has a list
of input objects and pruned objects and tasks LLM to do the same with a new list of input objects.

Figure 5: Input object list to LLM and the corresponding pruned list. The pruner here uses GPT-3.5
Turbo

7.3 LLM BASED PLANNER

The table below represents the plan executed by the agent (GPT-4 based agent) in an unseen envi-
ronment to find an orange. Column 1 represents the object list along with the captions generated by
LLaVA. Column two displays the frame when the agent identified a potential object (marked with
a bounding box) to explore, for finding the target object. Column 3 has the frame at the end of
exploring and Column 4 shows the agent’s decision regarding the target object’s presence.
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