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Abstract: As robots that follow natural language become more capable and preva-
lent, we need a benchmark to holistically develop and evaluate their ability to solve
long-horizon mobile manipulation tasks in large, diverse environments. To tackle
this challenge, robots must use visual and language understanding, navigation, and
manipulation capabilities. Existing datasets do not integrate all these aspects, re-
stricting their efficacy as benchmarks. To address this gap, we present the Language,
Navigation, Manipulation, Perception (LaNMP, pronounced Lamp) dataset and
demonstrate the benefits of integrating these four capabilities and various modal-
ities. LaNMP comprises 574 trajectories across eight simulated and real-world
environments for long-horizon room-to-room pick-and-place tasks specified by
natural language. Every trajectory consists of over 20 attributes, including RGB-D
images, segmentations, and the poses of the robot body, end-effector, and grasped
objects. We fine-tuned and tested two models in simulation, and evaluated a third
on a physical robot, to demonstrate the benchmark’s applicability in development
and evaluation, as well as making models more sample efficient. The models per-
formed suboptimally compared to humans; however, showed promise in increasing
model sample efficiency, indicating significant room for developing more sample
efficient multimodal mobile manipulation models using our benchmark.
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1 Introduction

Powered by large pretrained models, robots become more capable of understanding and executing
natural language commands [1, 2, 3, 4, 5, 6]. However, language-conditioned mobile manipulation
remains a major challenge. This is underscored by the best-performing system [7] of the NeurIPS
2023 Open Vocabulary Mobile Manipulation challenge [8] achieving a success rate of only 33%. One
key reason is the lack of a comprehensive benchmark that aids the development and evaluation of a
robotic system that can use multiple modalities to execute long-horizon tasks in diverse multiroom
environments. For example, tasks like “Go to the kitchen, pour the boiling water into the teapot, then
bring it to me in the living room” require the robot to use its language understanding, navigation,
manipulation, and perception capabilities to satisfy. Specifically, the robot must ground the language
command to the world, navigate between the kitchen and the living room, perceive (see) the boiling
water, and manipulate the kettle and the teapot while ensuring the water does not spill.

Most existing datasets only contain a subset of language, navigation, manipulation, and perception
data or are limited in ways, such as single-room environments, simulation only, and short-horizon
language commands, as shown in Table 1. This limits their ability to evaluate a robotic system’s
performance on long-horizon mobile manipulation tasks specified by complex language in multiroom
environments with large numbers of objects.
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Figure 1: Commands and their trajectories. The top orange row shows the teleoperation of the Spot
robot, and the bottom depicts the Spot’s egocentric observation.

To address these problems, we present the Language, Navigation, Manipulation, Perception (LaNMP)
dataset. LaNMP contains 524 and 50 mobile manipulation tasks in five simulated and three real-
world environments, respectively, that cover multiple rooms and floors. Each task is described by
a natural language command and accompanied by a trajectory collected from a human participant.
Every trajectory consists of perception, navigation, and manipulation data of over 20 attributes,
including RGB-D images, segmentation masks, and the poses of the robot body, end-effector, and
grasped objects. To the best of our knowledge, LaNMP is the first dataset that contains long-horizon
room-to-room mobile manipulation tasks integrating natural language, navigation, manipulation,
and perception (LaNMP) data in both simulation and the real world, utilizing a quadruped mobile
manipulator, Spot [9]. Example trajectories are illustrated in Figure 1.

To evaluate the applicability and strength of LaNMP as a training and evaluation benchmark, we
tested three models on various metrics. The models perform poorly in contrast to humans, scoring
at best 11% on Success Rate metrics, indicating that current mobile manipulation systems are not
advanced enough to succeed on this difficult benchmark. Therefore, further model development is
necessary to perform well on LaNMP.

2 Related Work

Numerous datasets incorporate 1-2 of the four aspects, e.g. [10, 11, 12]. Our discussion will focus on
those encompassing at least three aspects, as these are most closely related to our work. We primarily
focus on the most significant difference, which pertains to the aspects each dataset lacks. A subset of
the datasets is shown in Table 1, and the full table, Table 6.

2.1 Datasets of Language, Manipulation, and Perception

Many robot datasets encompass natural language, manipulation, and perception [13, 14, 15, 16,
17, 18, 19, 20, 21, 22, 23, 24, 25]. LaNMP is distinguished by incorporating navigation and these
modalities within a closed-loop system. This extends the robot’s general-purpose capabilities to
mobile tasks, surpassing the limitations of stationary tasks like those performed on tabletop.

2.2 Datasets of Language, Navigation and Perception

A considerable body of work encompasses natural language, perception, and navigation but not
manipulation. Room-to-Room [26], Room-Across-Room [27], ALFRED [28], CoNav [29], and
TEACh [30] introduce datasets that map natural language instructions and visual data to navigation
actions in household environments across multiple simulated platforms. Finally, QUARD [31] is
a dataset that enhances quadruped robots’ intelligence by integrating visual and natural language
instructions into executable actions for tasks like navigation, terrain traversal, and manipulation.
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However, QUARD’s manipulation refers to whole-body manipulation rather than object manipulation
utilizing an arm. Our quadruped robot has an arm, meaning it collects object manipulation data.
LaNMP’s advantage is that it includes manipulation data, enabling tasks that involve interacting with
and manipulating objects on the go rather than merely navigating through environments.

2.3 Datasets of Navigation, Manipulation and Perception

There are significantly fewer papers with navigation, manipulation, and perception (NPM) but no
natural language. Wong et al. [32] introduce the MoMaRT system, which allows for intuitive
control of a mobile manipulator’s arm and base through teleoperation. It focuses on collecting a
multi-user demonstration dataset in simulated environments using MoMaRT, capturing long-horizon
mobile manipulation tasks to support novel imitation learning with error detection methods. Mobile
ALOHA [33] is a cost-effective physical system designed for imitating bimanual, whole-body mobile
manipulation tasks, which is used as a teleoperation system for data collection. It was used to
collect mobile manipulation NPM data, which was then co-trained existing imitation learning models.
BRMData [34] is a bimanual-mobile robot manipulation dataset for household tasks, featuring
diverse manipulation scenarios and sensory inputs to advance robot learning and imitation from
human demonstrations. Unlike these datasets, LaNMP centers its tasks around natural language,
using it as the core modality upon which all other modalities are built. Incorporating natural language
enhances user accessibility, facilitates intuitive human-robot interaction, and enables robots to execute
a wider range of tasks based on semantic instructions.

2.4 Datasets of Language, Navigation, Manipulation and Perception

Few papers comprehensively cover natural language, perception, navigation, and manipulation, and
they often have limitations in other areas. RT-1 [35] is an approach utilizing a transformer that inputs
visual and textual data and outputs both navigation and manipulation actions to complete mobile
manipulation tasks. Simultaneously, they release a dataset collected using two robots from both
simulation and the real world used to train the method. While this dataset encompasses LaNMP’s
modalities, LaNMP is different in the following ways: 1) RT-1 is limited in scope, focusing solely on
fetch and deliver tasks within single kitchen scenes. In contrast, LaNMP supports more complex,
longer-horizon mobile manipulation tasks that span multiple rooms and floors in a diverse set of
environments. 2) RT-1 encompasses fewer data types than LaNMP. For instance, RT-1’s perception
data is limited to RGB, whereas LaNMP includes RGB, depth, and instance segmentations. 3) The
embodiments used in LaNMP, both in simulation and the real world, differ from those in RT-1.
To collect data on physical robots, we used a quadruped mobile manipulator, while RT-1 used a
wheeled mobile manipulation, so LaNMP can be used to evaluate the locomotion of both wheeled and
quadruped robots. In addition, using a quadruped allows our data to expand to tasks in difficult-to-
navigate areas, such as stairs in a house, a feat that RT-1’s wheeled robots cannot accomplish. Finally,
while RT-1 does technically have navigation, it seems to be confined to only moving to kitchen table
from a few meters away. Conq Hose [36] is a dataset utilizing a quadruped robot, Spot, to grab, lift,
and drag a vacuum hose around in a real-world environment. The dataset is limited in size, with
only 139 trajectories, capabilities, ability to perform only one task, and data types. Furthermore,
it only contains 2-3 rooms, does not include multiroom navigation, and its navigation is limited to
backward and forward slight movements. LaNMP contains Spot body velocity, arm velocity, joint
states, etc., while Conq Hose does not. It is also restricted to the real world, lacking simulation data.
RoboCasa [37] is a simulation software that can be used to create datasets for training robots in
everyday environments, leveraging LLMs to enhance diversity and realism. The created dataset does
not contain real robot data, unlike LaNMP. Finally, Open X-Embodiment (OXE) [38] is a dataset
combining many existing datasets, utilizing a multitude of real robots and a few simulated ones,
aimed at exploring the potential for training generalist robotic policies that can be efficiently adapted
to new robots, tasks, and environments. The authors also showcase RT-X models demonstrating
the benefits of leveraging combined experiences across diverse robotic platforms. Relevant sub-
datasets, such as RT-1, have already been discussed in this section. OXE is vastly composed of
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Real Sim Natural Language Navigation Manipulation Perception Multiroom Navigation

RT-1 ✓ ✓ ✓ ✓ ✓ ✓ ✗
Conq Hose ✓ ✗ ✓ ✓ ✓ ✓ ✗
RoboCasa ✗ ✓ ✓ ✓ ✓ ✓ ✓
ALFRED ✗ ✓ ✓ ✓ ✗ ✓ ✗
QUARD ✓ ✓ ✓ ✓ ✗ ✓ ✗
Mobile ALOHA ✓ ✗ ✗ ✓ ✓ ✓ ✗
VIMA ✗ ✓ ✓ ✗ ✓ ✓ ✗
DROID ✓ ✗ ✓ ✗ ✓ ✓ ✗

LaNMP (Ours) ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 1: Dataset comparison of the different aspects and modalities. Full table is at Table 6.

manipulation-only tabletop data, lacking a substantial amount of navigation data, meaning limited
mobile manipulation. As a result, the vast majority of tasks are short-horizon, even in the few mobile
manipulation sub-datasets. This also means that OXE can potentially suffer from the class imbalance
problem. In addition, OXE includes a wide range of datasets, each with its own unique features but
organized under a common structure. As a result, some data trajectories in OXE may lack certain
attributes, leading to gaps and inconsistencies in the dataset. On the other hand, LaNMP ensures
completeness in this aspect. It is important to understand that directly comparing OXE and LaNMP
is not a straightforward evaluation because LaNMP is a single dataset, while OXE is a combination
of multiple datasets. This difference suggests that LaNMP could be incorporated into the OXE
framework, which would open up exciting possibilities for integration and advancement.

3 Language, Navigation, Manipulation and Perception (LaNMP) Dataset

LaNMP is a multimodal dataset that contains long-horizon mobile manipulation tasks specified by
natural language in diverse multiroom simulated and real-world environments. Having both simulated
and real data strengthens the diversity of the dataset and, as a result, the generalizability and sample
efficiency of models being trained on it. LaNMP encapsulates a broad spectrum of tasks typically
performed at the home or workplace. Completing the tasks requires the robot to use its language
understanding, navigation, manipulation, and perception capabilities. Throughout task execution,
comprehensive trajectory data with over 20 attributes, e.g., RGB-D images, segmentation masks, and
the poses of the robot body, end-effector, and grasped objects, is captured at a frequency of 3 Hz.

The relative scarcity of long-horizon data in existing datasets poses a significant challenge for
developing versatile robotic systems capable of navigating and interacting with complex environments
over extended periods of time. Our benchmark dataset uniquely enriches the landscape of long-
horizon multimodal multiroom data.

3.1 Simulation Dataset

Our simulation dataset comprises 524 trajectories over 20 rooms in five environments. We selected
environments that ensured diversity in objects and room layouts, thus enhancing the generalizabil-
ity of models trained on our dataset. We use the AI2THOR simulator [39]. Specifically, we use
RoboTHOR [40] environments because they have multiple rooms, while the iTHOR [39] environ-
ments used by existing datasets, such as ALFRED, mainly have single rooms. In each environment,
there is an average of 105 trajectories, as illustrated in Figure 2d. The average length of these
trajectories is 172 steps, as detailed in Figure 2a.

We used the ManipulaTHOR [41] robot in the RoboTHOR environments since it has an arm with
low-level pose data. We collected 13 attributes, such as RGB-D images, segmentations, and the poses
of the robot body, end-effector, and grasped objects. Figure 3 provides more data details.

We used Prolific to collect 524 natural language commands from 41 participants. Next, we recruited a
different group of 15 participants to execute the commands on the simulator. We collected trajectories
comprising navigation, manipulation, and perception data. Appendices 7.2.2, 7.2.3, and ?? contain
more details about recruiting, simulation data collection, and crowdsourcing.
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Figure 2: Dataset Statistics

3.2 Real-World Dataset

Our real-world dataset comprises 50 trajectories across 10 rooms in three environments. The first
is a three-room laboratory, the second is a floor in a university building, and the last spans two
adjacent floors connected by stairs in the same building. We picked these environments for their large
size, multitude of rooms, inclusion of stairs, and object diversity. The two floors contain kitchens,
furnished lobbies, a classroom, and a staircase. We recruited seven participants that provided
50 natural language commands. Specifically, 20, 15, and 15 for each of the three environments,
respectively. Each command specifies long-horizon room-to-room pick-and-place tasks. The collected
commands were executed on a quadruped mobile manipulator Spot. More details in Appendix 7.1.

4 Evaluation

LaNMP can be used to benchmark different paradigms such as imitation learning (IL) [42, 43, 44],
reinforcement learning (RL) [45], skill learning and abstraction, and providing in-context examples
for planning. Since there has been increased interest and widespread adoption in IL approaches, such
as behavior cloning (BC) [42] models (e.g. RT [35, 46, 38]), we evaluated BC models.

To evaluate the applicability and strength of the LaNMP benchmark, we employed it to fine-tune
two recent models, namely RT-1 [35] and ALFRED’s Seq2Seq model (S2S) [28], utilizing the
simulation data from LaNMP, and evaluate it on a third model LIMP [6]. We also tested how well
its diversity can improve model sample efficiency. RT-1 and S2S take natural language commands
and RGB images as input, while S2S also takes in previous actions. LIMP takes as input natural
language commands. RT-1 and S2S output a mix of high and low-level navigation and manipulation
actions for the simulated and real robots, while LIMP outputs a Task and Motion Plan (TAMP)
for real robots. This selection of models was instrumental in conducting a thorough evaluation of
LaNMP’s benchmarking efficacy across a wide spectrum of model dimensions and initial performance
benchmarks. LIMP is a high performing system composed of large foundation models. RT-1 is
a relatively large (∼ 45M parameters) and high-performing model, while S2S is smaller (∼ 35M
parameters) and exhibited poor performance on the ALFRED benchmark. Details in Appendix 7.3.

4.1 Experiment Details

For S2S and RT-1, we performed fine-tuning on the simulation dataset utilizing 5-fold cross-validation
to evaluate scene generalizability potential. Trajectories in each scene are designated to a fold;
fine-tuning is performed using four scene folds and evaluated on the fifth held-out scene fold.
Additionally, we performed another experiment focusing on task generalization instead by utilizing
a random (seeded for community benchmarking) subset of every scene for training and testing.
Finally, we performed experiments evaluating the dataset’s diversity and its potential in improving
sample efficiency. All experiments utilized cross entropy (CE) loss between the predicted action
distributions and the ground-truth actions. Given the scope of our research, hyperparameter tuning
was deemed unnecessary, and consequently, a validation split was not incorporated. Thus, for the task
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generalization experiment, we used an 85% train, 15% test split for tasks in every scene. Fine-tuning
was performed on a single 24 GB NVIDIA 3090 GPU.

Given that LIMP integrates foundation models with TAMP algorithms, we do not fine-tune. Instead,
we conduct zero-shot evaluations by inputting LaNMP commands. Our assessment encompasses 45
LaNMP tasks, employing a combination of commands from both simulated and real-world data. The
evaluations are carried out on Spot in the laboratory environment.

4.2 Evaluation Metrics

LaNMP assumes humans are logical agents with common-sense reasoning by collecting teleoperated
trajectories for complex long-horizon tasks. For robust evaluation, we considered two categories of
metrics for cross-scene and task generalization experiments: “ground truth relative” (GTR) metrics
that compare against LaNMP trajectories as standards and “ground truth independent” (GTI) metrics
that evaluate a trajectory (ground-truth or predicted) on task understanding or smoothness. These
metrics provide a multifaceted assessment framework: Task Success (GTR), Grasp Success Rate
(GTR), Average RMSE (GTR), Average Number of Steps, Mean and Standard Deviation in State
Differences (GTI), and CLIP Embedding Reward (GTI). All metrics are to characterize the dataset
and to be reported as benchmark scores for others. More metric details in Appendix 7.5.

5 Analysis

The objective of evaluating the models is to determine the dataset’s applicability, assess its difficulty
as a benchmark, and see how well it improves sample efficiency through its diversity. Both BC
models demonstrated a success rate of 0%, starkly contrasted against the ground truth trajectories.
Meanwhile LIMP performed better, yet still poorly, at 11%. However the sample efficiency was
shown to improve. This significant discrepancy underscores the infancy of current State-of-the-Art
(SOTA) models in mirroring the proficiency of human counterparts, partially due to low sample
efficiency. Consequently, it accentuates the importance of cultivating more comprehensive datasets,
such as LaNMP, encompassing a broader spectrum of abilities and sensory modalities. Experimental
results are summarized in Tables 2.

5.1 Model Performance Results

Specifically, the performances can be delineated as follows:

• The lower CE Loss showed that RT-1 learns better than S2S, which is unsurprising since
RT-1 is a larger and more advanced model. More loss details are in Appendix 7.4.

• S2S’s RMSE is lower than RT-1’s. This may be attributed to S2S frequently outputting NoOP

commands, resulting in it often remaining stationary. This means the predicted base and
end-effector positions could be closer to the ground-truth than RT-1, due to RT-1 exploring
more, thus it potentially deviated further from the GT path.

• RT-1’s trajectory lengths were significantly shorter because S2S often predicted many NoOp

until it reached the maximum action limit of 1500 whereas RT-1 usually stopped earlier at
∼ 300− 400 steps. Both were still less efficient than the human.

• The weighted movement between step positions indicates the smoothness of the agents’
control, with smaller values representing better smoothness. Although the models show
smaller values than humans, this is primarily due to agents, especially S2S, remaining
stationary for large parts of the predicted trajectories.

• Higher CLIP values represent better performance, with humans scoring higher than both
models. This disparity indicates that the models are not near human-level understanding,
reasoning, and grounding.

• All CLIP scores, including those of the humans, were likely low due to the lack of semantic
correlation between observations and commands throughout most of a trajectory. This is
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attributed to the robot primarily looking downward towards the ground or into the distance
while navigating to its target.

• LIMP’s relative superior performance can be attributed to the integration of foundation
models like GPT-4 [47], which leverage their extremely large-scale architecture.

• LIMP’s shortcomings primarily stem from its object-centric design, which lacks an under-
standing of spatial concepts like rooms and starting points. It struggles with tasks involving
room traversal because it relies on object detection, which fails to distinguish rooms or
their relationships, such as recognizing adjacent spaces. The few tasks that succeeded did
not mention rooms, but only the objects in the different rooms. Additionally, the lack of a
‘starting point’ concept means the system cannot track the robot’s initial position, leading to
confusion in tasks mentioning it. Some failures are due to limitations in object detection,
though this can be mitigated by updating to more advanced models as they become available.

• LIMP’s low performance despite not using any LaNMP trajectories for training indicates
that the BC models’ low success rates are not due to the data being of low quality, but rather
an issue with the models themselves, such as not being sample efficient.

• LIMP’s poor SR (11%) without trajectory training suggests that the BC models’ low success
rates stem from model limitations, not LaNMP’s data quality, particularly due to poor sample
efficiency with smaller datasets.

5.2 Dataset Diversity & Sample Efficiency

It is evident that the BC models are not sample efficient, as they were not able to learn enough
from LaNMP’s ∼ 400 trajectories. BC models can suffer from sample inefficiency [48, 49], and
Transformers are known to require large amounts of training data [50], suggesting that future models
may have to use different paradigms and architectures to reach human-level sample efficiency.

We propose an alternate solution to improve sample efficiency by using diverse data. Although
dataset scale is essential for policy learning and generalization in modern models due to their sample
inefficiency, we hypothesize that diversity in scene and modality data is equally, if not more, critical
for robotics models. Works such as ALFRED and Prompter [51] performed ablations across different
modalities, which demonstrated the performance improvement from using multimodal inputs are
greater than the combined performance improvements from using unimodal inputs. This speaks to
the importance of diverse input features for policy learning.

To assess the importance of scene diversity and its role in improving sample efficiency, we evaluated
RT-1 and S2S on 100 trajectories evenly sampled from an increasing number of scenes (1, 2, 3, 4)
– such that the number of trajectories per scene reduced (100, 50, 33, 25), but the total number of
trajectories remained unchanged as 100. All four ablations are tested on a fifth held-out test scene.
Furthermore, we compare a larger, diverse set of scenes with fewer trajectories to a smaller, less
diverse set with more trajectories (Table 4). Additionally, we cluster tasks by the commands using
cosine similarity, contrasting fewer clusters against more clusters while maintaining the same amount
of trajectories (Table 5).

Results can be delineated as follows:

• S2S’s CE loss decreased significantly as the number of scenes increased, showing the
importance of diversity over scale in this context.

• After training RT-1 on just 100 trajectories, the cross entropy loss is within 2σ of the
loss after fine-tuning on ∼ 400 trajectories for the cross-scene experiment. This suggests
that fine-tuning on a diverse but smaller dataset leads to similar policy generalization as
fine-tuning on a dataset with 4× the scale on an unseen test set.

• The standard deviation in RT-1’s test set CE losses is statistically significant given that losses
lie > 1σ from one another. This suggests that varying the dataset diversity has a measurable
influence on the CE loss of an unseen test set, i.e., the generalizability of the learned policy.
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Model SR Length Grasp SR RMSE v.s. GT Weighted ∆xyz CLIP EMA Score End Goal Dist CE Loss

Cross-Scene
— S2S 0.0 655.09 ± 450.52 0.0 3.11 ± 0.63 0.0026 ± 0.0035 0.1614 ± 0.0120 12.42 ± 5.44 286.77 ± 20.31
— RT-1 0.0 205.03 ± 27.36 0.0 9.50 ± 0.27 1.3423 ± 0.1133 0.1521 ± 0.0065 12.56 ± 6.67 80.98 ± 4.68

Task Generalization
— S2S 0.0 501.60 ± 578.62 0.0 3.01 ± 1.18 0.0008 ± 0.0014 0.1681 ± 0.0327 12.83 ± 11.12 286.66 ± 398.80
— RT-1 0.0 199.56 ± 106.11 0.0 9.74 ± 1.67 1.3980 ± 0.5834 0.1488 ± 0.0243 12.40 ± 12.20 82.61 ± 1.81

Ground Truth 1.0 171.69 ± 70.80 1.0 — 0.5576 ± 0.1751 0.2067 ± 0.0311 — —

Table 2: Quantitative performance of the BC models (S2S and RT-1) on LaNMP’s simulation dataset

Model 1 Scene (100) 2 Scenes (50/50) 3 Scenes (33/33/34) 4 Scenes (25/25/25/25)

S2S 582.33 ± 518.80 479.81 ± 473.80 509.85 ± 475.47 405.99 ± 475.64
RT-1 88.23 ± 1.92 93.50 ± 1.89 78.83 ± 1.88 89.63 ± 1.84

Table 3: Cross entropy loss for different scenes, showing scene diversity vs. dataset scale

• Although the loss does not improve with an increasing number of scenes in Table 4, the
difference remains minimal, particularly in RT-1, suggesting that higher scene diversity with
fewer trajectories can maintain comparable performance. This also implies that using more
than three scenes may result in equal or better loss compared to a single scene evaluation

• Table 5 demonstrates that an 820% increase in task diversity enhances model performance,
thereby improving sample efficiency.

The results highlight the crucial role of diversifying a dataset’s scenes and tasks. It suggests that
models can train on datasets that, despite being limited in volume, are abundant in scene and task
diversity, thereby augmenting their sample efficiency. Although the benchmark showed that the
models were sample inefficient, it did help improve their sample efficiency without any architectural
changes. Thus, rather than necessarily changing paradigms and architectures, increasing the number
of modalities and diversity of the data is a potential solution to improving model sample efficiency.

Model 1 scene 3 scenes (80%) 3 scenes (66%)

S2S 356.36 381.40 386.21
RT-1 88.84 92.49 95.72

Table 4: CE Loss for 116 tasks using low vs high
diversity of scenes averaged across 5 runs. %
indicate the proportion of trajectories compared
to the 1 scene evaluation.

Model Less Clusters (10) More Clusters (92)

S2S 318.71 275.39
RT-1 88.43 87.32

Table 5: CE Loss averaged across 5 runs for clus-
tering based on cosine similarity of task com-
mands, comparing high and low task diversity,
each using 238 tasks.

6 Conclusion

We introduce LaNMP, a mobile manipulation benchmark comprised of simulated and real-world
trajectories paired with their respective language commands specifying household tasks. The trajecto-
ries are long-horizon, spanning multiple rooms and floors, consisting of navigation, manipulation,
and perception data. We fine-tuned and evaluated two models, and tested a third, on LaNMP to test its
applicability, strength, and sample efficiency as a benchmark. Though the models reduce training and
test-set losses, suggesting good generalization, they exhibit poor performance on metrics. However,
their sample efficiencies were improved due to the dataset’s scene and task diversity. This suggests
that LaNMP could serve as a difficult benchmark for advancing the development of sample efficient
mobile manipulation models. Currently, there is no quadruped simulation data, making that a task for
the future. Extending the benchmark to include tasks involving more complex manipulation than
pick-and-place will increase its applicability to a broader set of models.
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7 Appendix

1. Appendix 7.1: More Dataset Details

2. Appendix 7.2: Data Collection

3. Appendix 7.3: Model Details

4. Appendix 7.4: Cross Entropy Loss Details

5. Appendix 7.5: Metric Details

7.1 More Dataset Details

This section provides the full table, Table 6, of related datasets mentioned in Section 2. Additionally,
all the data types collected for the dataset are displayed in JSON format in Figures 3 and 4. Finally, it
explains how the scoring in Figure 5 is calculated.

7.1.1 Further Dataset Differentiation

Figure 5 shows how LaNMP is scored differently from other datasets. The scoring system is divided
into 2 axes: Capabilities and Complexity. The Capabilities axis measures the capabilities and
modalities the dataset includes out of the four main categories: Language, Navigation, Manipulation,
and Perception. The purpose is to see how diverse the dataset inputs are. We calculate the Capabilities
score C1 as follows:

L: Natural Language
N : Navigation
M : Manipulation
P : Perception
R: Real
S: Sim

C1 = (L+N +M + P )(R+ S)

where each attribute is 1 if it’s present, 0 otherwise. The maximum Capabilities score is 8. Conversely,
the Complexity axis shows how difficult and diverse the tasks and environments are. We define the

Real Sim Natural Language Navigation Manipulation Perception Multiroom Navigation

RT-1 ✓ ✓ ✓ ✓ ✓ ✓ ✗
Collab ✗ ✓ ✓ ✗ ✓ ✓ ✗
CALVIN ✗ ✓ ✓ ✗ ✓ ✓ ✗
GVCCI ✓ ✗ ✓ ✗ ✓ ✓ ✗
LA-TaskGrasp ✓ ✗ ✓ ✗ ✓ ✓ ✗
RoboSet ✓ ✗ ✓ ✗ ✓ ✓ ✗
AlphaBlock ✓ ✓ ✓ ✗ ✓ ✓ ✗
VIMA ✗ ✓ ✓ ✗ ✓ ✓ ✗
RFST ✓ ✓ ✓ ✗ ✓ ✓ ✗
DROID ✓ ✗ ✓ ✗ ✓ ✓ ✗
Dobb-E ✓ ✗ ✓ ✗ ✓ ✓ ✗
DAA ✓ ✗ ✓ ✗ ✓ ✓ ✗
NatSGD ✓ ✓ ✓ ✗ ✓ ✓ ✗
ALFRED ✗ ✓ ✓ ✓ ✗ ✓ ✗
TEACh ✗ ✓ ✓ ✓ ✗ ✓ ✗
Room-to-Room ✗ ✓ ✓ ✓ ✗ ✓ ✓
Room-Across-Room ✗ ✓ ✓ ✓ ✗ ✓ ✓
QUARD ✓ ✓ ✓ ✓ ✗ ✓ ✗
MoMaRT ✗ ✓ ✗ ✓ ✓ ✓ ✗
BRMData ✓ ✗ ✗ ✓ ✓ ✓ ✗
Conq Hose ✓ ✗ ✓ ✓ ✓ ✓ ✗
RoboCasa ✗ ✓ ✓ ✓ ✓ ✓ ✓
CoNav ✗ ✓ ✓ ✓ ✗ ✓ ✓
BridgeData V2 ✓ ✗ ✓ ✗ ✓ ✓ ✗

LaNMP (Ours) ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 6: Full table of dataset comparison of the different aspects and modalities.
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Data Schema Adopted for LaNMP Dataset - Simulation Environment in AI2THOR 
{ 
    "nl_command": "Find the pepper and put it on top of the green chair with a blue pillow on it.", 
    "scene": "FloorPlan_Train8_1", 
    "steps": [ 
        { 
            "sim_time": 0.19645099341869354, 
            "wall-clock_time": "15:49:37.334", 
            "action": "Initialize", 
            "state_body": [  # robot pose 
                3.0, 
                0.9009992480278015, 
                -4.5, 
                269.9995422363281 
            ], 
            "state_ee": [  # end-effector pose 
                2.5999975204467773, 
                0.8979992270469666, 
                -4.171003341674805, 
                -1.9440563492718068e-07, 
                -1.2731799533306385, 
                1.9440386333307377e-07 
            ], 
            "hand_sphere_radius": 0.05999999865889549 
            "held_objs": [], 
            "held_objs_state": {}, 
            "inst_det2D": { 
                "keys": [  # identified instances in the environment 
                    "Wall_4|0.98|1.298|-2.63", 
                    "Wall_3|5.43|1.298|-5.218", 
                    "RemoteControl|+01.15|+00.48|-04.24", 
                    ...], 
                "values": [  # bounding box coordinates of each instance 
                    [418, 43, 1139, 220], 
                    [315, 0, 417, 113],  
                    [728, 715, 760, 719], 
                    ...] 
            }, 
            "rgb": "./rgb_0.npy",  # path of visual data for this timestep 
            "depth": "./depth_0.npy", 
            "inst_seg": "./inst_seg_0.npy", 
        } 
    ] 
} 

Figure 3: Example JSON file from the simulation dataset that includes all the collected data types

Complexity score C2 as follows:
C2 = log10(te)

where t and e are the number of trajectories and environments each dataset has, respectively. We take
the logarithm of this product to account for large differences across datasets. To get the plotted score,
we take the geometric mean G of the axes:

G =
√
C1 · C2

7.1.2 Data Types

There are 24 unique data types across both the simulated and real-world data. Specifically, there are 4
simulated-only, 12 real-only, and 8 of both. All of the simulated ones are 13, and 20 are all of the real
ones. Figures 3 and 4 show all of data types.

7.2 Data Collection

This section displays the maps that the simulation and real robots used during data collection in
Figures 6 and 7. It also provides further details on how the data was collected.
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Data Schema Adopted for LaNMP Dataset - Robot Environment with Boston Dynamics Spot 
{ 

    "language_command": "Take the cup from the table in the dining area which is closest to the stairs and bring it to the table near the 

        couches in the corner of the big dining room besides the windows.", 

    "scene_name": "upstairs", 

    "wall_clock_time": "05:29:40.117", 

    "left_fisheye_rgb": "./Trajectories/trajectories/data_33/folder_0.zip/left_fisheye_image_0.npy",  # path of visual data for this timestep 

    "left_fisheye_depth": "./Trajectories/trajectories/data_33/folder_0.zip/left_fisheye_depth_0.npy", 

    "right_fisheye_rgb": "./Trajectories/trajectories/data_33/folder_0.zip/right_fisheye_image_0.npy", 

    "right_fisheye_depth": "./Trajectories/trajectories/data_33/folder_0.zip/right_fisheye_depth_0.npy", 

    "gripper_rgb": "./Trajectories/trajectories/data_33/folder_0.zip/gripper_image_0.npy", 

    "gripper_depth": "./Trajectories/trajectories/data_33/folder_0.zip/gripper_depth_0.npy", 

    "left_fisheye_instance_seg": "./Trajectories/trajectories/data_33/folder_0.zip/left_fisheye_image_instance_seg_0.npy", 

    "right_fisheye_instance_seg": "./Trajectories/trajectories/data_33/folder_0.zip/right_fisheye_image_instance_seg_0.npy", 

    "gripper_fisheye_instance_seg": "./Trajectories/trajectories/data_33/folder_0.zip/gripper_image_instance_seg_0.npy", 

    "body_state": {"x": 1.3496176111016192, "y": 0.005613277629761049, "z": 0.15747965011090911}, 

    "body_quaternion": {"w": 0.04275326839680784, "x": -0.0008884984706659231, "y": -0.00030123853590331847, "z": 0.999085220522855}, 

    "body_orientation": {"r": -0.003024387647253151, "p": 0.017297610440263775, "y": 3.05395206999625}, 

    "body_linear_velocity": {"x": 0.00015309476140765987, "y": 0.001022209848280799, "z": 0.0001717336942742603}, 

    "body_angular_velocity": {"x": 4.532841128101956e-05, "y": 0.003003578426140623, "z": -0.0046712267592016726}, 

    "arm_state_rel_body": {"x": 0.5535466074943542, "y": -0.00041040460928343236, "z": 0.2611726224422455}, 

    "arm_quaternion_rel_body": {"w": 0.9999685287475586, "x": -0.0011630485532805324, "y": 0.007775876671075821, "z": 0.007775876671075821}, 

    "arm_orientation_rel_body": {"x": -0.0023426745301198485, "y": 0.015549442728134426, "z": -0.0021046873064696214}, 

    "arm_state_global": {"x": 0.7976601233169699, "y": -0.00041040460928343236, "z": 0.2611726224422455}, 

    "arm_quaternion_global": {"w": 0.043804580215426665, "x": -0.008706641097541701, "y": -0.0011317045101892497, "z": 0.9990015291187636}, 

    "arm_orientation_global": {"x": -0.003024387647253151, "y": 0.017297610440263775, "z": 3.05395206999625}, 

    "arm_linear_velocity": {"x": 0.002919594927038712, "y": 0.004658882987521996, "z": 0.012878690074243797}, 

    "arm_angular_velocity": {"x": -0.01867944403436315, "y": 0.02911512882983833, "z": -0.008279345145765714}, 

    "arm_stowed": 1,  # Boolean 

    "gripper_open_percentage": 0.39261579513549805, 

    "object_held": 0,  # Boolean 

    "feet_state_rel_body": [ 

        {"x": 0.3215886056423187, "y": 0.17115488648414612, "z": -0.5142754912376404}, 

        {"x": 0.32302412390708923, "y": -0.17028175294399261, "z": -0.5178792476654053}, 

        {"x": -0.27173668146133423, "y": 0.16949543356895447, "z": -0.5153297185897827}, 

        {"x": -0.2700275778770447, "y": -0.1685962975025177, "z": -0.5157276391983032}], 

    "feet_state_global": [ 

        {"x": -0.3341075772867149, "y": -0.14278573670828154, "z": -0.5149532673227382}, 

        {"x": -0.3063631798978494, "y": 0.19752718640765313, "z": -0.518328069669068}, 

        {"x": 0.25719142551156154, "y": -0.19181889447285838, "z": -0.5149682779363334}, 

        {"x": 0.2843717159282008, "y": 0.1451830347804529, "z": -0.5151399962832868}], 

    "all_joint_angles": { 

        "fl.hx": 0.010119102895259857, 

        "fl.hy": 0.7966763973236084, 

        "fl.kn": -1.576759934425354, ...}, 

    "all_joint_velocities": { 

        "fl.hx": -0.00440612155944109, 

        "fl.hy": -0.004167056642472744, 

        "fl.kn": -0.007508249022066593, ...} 

} 

Figure 4: Example JSON file from the real-world dataset that includes all the collected data types

7.2.1 Simulation Command Collection Details

The simulation natural language commands were collected using Prolific through a website we
developed. The participants utilized it to watch a tutorial video, read instructions about the task,
explore the five RoboTHOR environments to know what commands to give, then provid 15 commands,
three for each of the five environments. We collected a total of 615 natural language commands
from the 41 participants. We then conducted a meticulous filtering process to select 524 high-quality
commands that instruct the robot to perform room-to-room pick-and-place tasks by using all its
navigation, manipulation, and perception capabilities.

The website was hosted on AWS Elastic Beanstalk and the inputted commands were saved on an
AWS S3 bucket. Screenshots of the website are displayed in Figure 8.
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Figure 5: LaNMP is differentiated from other datasets with diverse input features and environments.
Quantitative scores show the geometric mean of the two axes, where LaNMP shows both high
complexity and input diversity. Most datasets have low input diversity but a range of complexities.

7.2.2 Crowdsourcing

The Prolific participants were paid an hourly wage of US$10, totaling US$380. Subsequently, the
simulation teleoperation of those commands was done by a separate group of paid participants. They
were recruited via Google Forms. The recruitment instructions are shown in Figure 15a. This group
of participants was paid US$10/hr via Amazon gift cards, totaling US$630.

For the real-world data, a different group of seven was recruited to explore the environments and give
natural language commands of tasks the robot can do, similar to the simulation. They were recruited
via Google Forms. The recruitment instructions are shown in Figure 15b. The participants chose to
volunteer for this task. Finally, the real robot teleoperation of those commands was done by one of
the authors.

7.2.3 Real Robot Teleoperation

To collect the trajectory data, we first built dense 3D topological maps (shown in Figure 7) of the
environments and then teleoperated the Spot robot via joysticks and a tablet to follow the collected
commands. To collect, organize, and save the data, a laptop was mounted and connected via Ethernet
to the Spot. The reason for mounting a laptop was so that the collection frequency of 3 Hz remains
consistent, unlike using WiFi. 3 Hz in particular was an inspiration from the RT-1 paper [35].

Spot has more sensors than the virtual agent, allowing us to collect more diverse data types. The main
data types include RGB-D, body and end-effector poses, body and arm velocities, joint states, and
velocities. Figure 4, lists all data types. The average trajectory length is 323, as detailed in Figure 2b.

7.3 Model Details

The implementation details of the RT-1 and ALFRED Seq2Seq models are described in Section ??
and are expanded upon in this section. The maximum action prediction limit is 1500.

7.3.1 RT-1

Robotics Transformer 1 (RT-1) [35] is a model designed for generalizing across large-scale, multi-
task datasets with real-time inference capabilities. RT-1 leverages a Transformer architecture [52]
to process images and natural language instructions to generate discretized actions for mobile
manipulation. RT-1 is trained on a diverse dataset of approximately 130K episodes across more
than 700 tasks collected using 13 robots. This enables RT-1 to learn through BC from human
demonstrations annotated with detailed instructions. Although RT-1-X [38] demonstrates superior
performance, it was trained on OXE, which is mainly manipulation-only, while RT-1 was trained on
mobile manipulation data. This makes RT-1 more suitable for our mobile manipulation fine-tuning.

To fine-tune RT-1, we utilized the natural language commands with RGB image observations from
LaNMP. Due to the contrasting embodiment and incompatible action space of ManipulaTHOR,
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(a) (b) (c)

(d) (e)

Figure 6: Simulated Environment Maps

we modified the self-attention head to output 7-dimensional action-tokens that predict the body
state (body position, body yaw, body camera pitch), the end-effector state (end-effector
position, grasp signal), control modes (between body and end-effector), and episode termi-
nation. We find that predicting the difference of body and end-effector states between timesteps,
rather than predicting absolute coordinates, resulted in more stable learning. We adopted the action
tokenization approach used by RT-1 to categorize continuous action outputs into 1 of 256 uniformly
distributed bins between the minimum and maximum. More specific RT-1 modification details can be
found in Appendix 7.3.1.

In addition to the aforementioned modifications, others were made as well:
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(a) Laboratory Graph (b) Laboratory Point Cloud

(c) Multi-Floor Graph (d) Multi-Floor Point Cloud

Figure 7: Real-World Environment Robot Maps

• We utilized the Pytorch implementation of the RT-1.1 This required us to pretrain the model
before fine-tuning on LaNMP. We ran pretraining on the Bridge [53] dataset, which contains
language annotations and ground-truth trajectories for diverse environments - tabletop,
kitchen (also toy kitchen), and other household environments.

• Pretraining used subsample of 500 episodes per epoch from Bridge using a learning rate of
1× 10−4, batch size of 8, and a window size of 6 previous observations.

• For fine-tuning, we performed backpropagation and weight updates across all parameters of
the RT-1 model, i.e. no parameters were frozen.

• For the Cross-Scene and Task Generalization experiments we fine-tuned on the training set
over 2 epochs with a learning rate of 1× 10−4 and with the ‘Adam’ optimizer.

• For the scene diversity experiment, we randomly initialized RT-1 weights and trained directly
on LaNMP to control for the influence of pretrained policies and leave only dataset diversity
as the only independent variable. As we were training from initialization in this experiment,
we used a learning rate of 1× 10−4 and with the ‘Adam’ optimizer over 4 epochs.

• All fine-tuning experiments used a batch size of 8 with a window size of 6 previous image
observations (specific to RT-1) to predict the next action token. When constructing each
batch, 3 trajectories from the training dataset were bucketed using a window size of 6 and
further grouped into batches of 8 before being input into RT-1.

All attributes of the action space were discretized (using uniform discretization across the range of
each attribute) across 256 bins. For the next step, the RT-1 model was fine-tuned against a cross
entropy loss between the predicted discretized tokens and the ground-truth tokens. Furthermore, we
fine-tuned RT-1 to predict deltas or changes in the action attribute values at each time step, rather
than absolute values of each action attribute, as we empirically found this led to more stable learning.

1 https://github.com/Rohan138/rt1-pytorch
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(a) Main instructions along with a video tutorial.

(b) Detailed instructions on how to explore the environments.

(c) Forms for users to input their commands.

Figure 8: Website Screenshots
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The original model can be found in the RT-1 paper [35].

7.3.2 ALFRED Seq2Seq

The ALFRED paper introduces a Sequence-to-Sequence [54] model leveraging a CNN-LSTM
architecture with an attention mechanism for task execution. It encodes visual inputs via ResNet-
18 [55] and processes language through a bidirectional LSTM. A decoder processes these multimodal
inputs along with historical action data to iteratively predict subsequent actions and generate pixelwise
interaction masks, enhancing precise object manipulation capabilities within the given environment.

We utilized a subset of LaNMP’s data types, RGB, natural language, and previous actions to fit the
ALFRED model’s input specifications. We modified the ALFRED model outputs to an 8-dimensional
action vector tailored to our action space, encompassing modes (stop, base, grasp-release, head,
rotate, arm-base, and ee), base movements (NoOp, MoveAhead, MoveBack, MoveRight, and
MoveLeft), grasping actions (NoOp, PickupObject, ReleaseObject), head movements (NoOp,
LookUp, and LookDown), rotational angles (-359- 359 and NoOp), and end-effector movements
(specified ranges for x, y, z coordinates, including NoOp). The numerical actions, which are the
rotation and end-effector, are converted from global coordinates to relative coordinates by taking
the differences between the timesteps for more stable learning. Based on the findings from RT-
1, we discretized the continuous rotation and end-effector relative actions into 256 bins. This
structured action representation enabled precise predictions and executions of robotic actions within
the simulator at each timestep. Furthermore, we changed it so that only the goal command is used
rather than inputting specific instructions to the model at every timestep since the ideal situation is
for a human to command a robot only once. Detailed descriptions of the model adaption and data
modifications are provided in Appendix 7.3.3.

Furthermore, we utilized a forked improved implementation of the ALFRED Seq2Seq model.2

The model had to be modified to work for our data, robot, and environments. In addition to the
aforementioned modifications, the following were also made:

• All weights except the final layer were frozen during fine-tuning.

• Unfrozen weights were initialized with random values from the ranges of the actions/states.

• The final layer was swapped with a fully connected layer outputting all of the classes, which
is essentially the product of the number of bins and the number of actions.

• An adapter layer that resizes dimensions was added at the start of each LSTM cell from
the second one onward, due to the action output from the first cell being different from the
original.

• The model was fine-tuned to predict the discretized deltas or changes of the action/state
values since it led to more stable learning.

Furthermore, we experimented with fine-tuning continuous and discrete action outputs. The continu-
ous was regression utilizing Mean Squared Error (MSE) loss, while the discrete was classification
utilized CE loss. We settled on classification using 256 bins for discretization.

Details on the original model can be found in the ALFRED paper [28].

7.3.3 LIMP

Quartey et al. [6] introduces LIMP, a pick-and-place mobile manipulation system integrating Linear
Temporal Logic (LTL), foundation models, and novel TAMP algorithms to create a framework
for verifiably following complex robot instructions. The system first translates natural language
instructions into LTL formulas, utilizing foundation models to dynamically generate context-aware
translations that align with the desired task specifications. The LTL formulas incorporate Composable
Referent Descriptors (CRDs) to parameterize robot skills and disambiguate referent objects through

2 https://github.com/jiasenlu/alfred
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(a) Train (b) Test

Figure 9: RT-1 Task Generalization CE Loss Curves

encoded spatial information. The TAMP module then synthesizes these instructions into executable
plans, using a Progressive Motion Planner that compiles LTL formulas into finite-state automata.
This ensures that the generated plans are correct by construction, effectively interleaving navigation
and manipulation objectives to satisfy the temporal and spatial constraints of the instructions.

7.4 Cross Entropy Loss Details

This section illustrates the CE loss curves for all of the experiments conducted. The loss curves,
including for both training and testing, decreased over the course of training, showing the models
indeed learned from the LaNMP dataset. RT-1 losses are displayed in Figures 9, 10, and 11.
ALFRED’s Seq2Seq losses are displayed in Figures 12, 13, and 14.

(a) Train (b) Test

Figure 10: RT-1 Scene Diversity CE Loss Curves

7.5 Metric Details

Task Success (GTR): a binary value measuring whether an agent achieves the goal/completes the task
specified in the command.

Distance From Goal (GTR): the spatial distance between the agent’s final position after executing a
learned trajectory and the designated ground-truth goal state.

d = 1/2
(√

x2
gt body,n − x2

eval body,n +
√

x2
gt ee,n − x2

eval ee,n

)
Grasp Success Rate (GTR): the efficacy of the agent’s attempts to grasp objects. Specifically, the
percentage of attempts that result in successful object acquisition.

Average RMSE (GTR): the average root-mean-square error. It is a weighted average of body and
end-effector pose errors between the predicted and ground-truth trajectories, normalized by their
maximum lengths.

RMSE =
n∑

i=0

1/2
(√

x2
gt body,i − x2

eval body,i +
√

x2
gt ee,i − x2

eval ee,i

)
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This metric should not be interpreted in isolation but rather in conjunction with other metrics
to comprehensively assess the agent’s performance. This is because, in rare cases, the predicted
trajectories could theoretically be more efficient than the ground-truth.

Average Number of Steps (GTR): the total number of actions an agent takes. It serves to evaluate a
model’s ability to replicate efficient human navigation.

Mean and Standard Deviation in State Differences (GTI): the standard deviation in positional
differences between successive timesteps in a trajectory. It assesses the control smoothness exhibited
by the agent to compare learned trajectories against the fluidity and naturalness of the ground-truth
trajectories.

∆ =

n∑
i=1

1/2
(√

x2
eval body,i − x2

eval body,(i−1)
+

√
x2

eval ee,i − x2
eval ee,(i−1)

)

CLIP Embedding Reward (GTI): the exponential moving average (EMA) of CLIP [56] text-image
correlation scores for all steps of a trajectory. Natural language task specification can be ambiguous
and difficult to formulate into a structured goal condition. Inspired by previous works using CLIP
for RL rewards [57, 58], we propose this metric to capture complex semantic correlations between
the trajectory and task specification. It attempts to capture the agent’s understanding, reasoning, and
grounding of a task using the CLIP embedding space. Basically, it tries to provide a measure of the
agent’s task comprehension and execution fidelity.

EMAi = αEMAi−1 + (1− α)ri

where
ri := CLIP (task, imgi)
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(a) Folds 2-5 Train (b) Fold 1 Test

(c) Folds 1, 3-5 Train (d) Fold 2 Test

(e) Folds 1-2, 4-5 Train (f) Fold 3 Test

(g) Folds 1-3, 5 Train (h) Fold 4 Test

(i) Folds 1-4 Train (j) Fold 5 Test

Figure 11: RT-1 Cross-Validation CE Loss Curves
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(a) Folds 2-5 Train (b) Fold 1 Test

(c) Folds 1, 3-5 Train (d) Fold 2 Test

(e) Folds 1-2, 4-5 Train (f) Fold 3 Test

(g) Folds 1-3, 5 Train (h) Fold 4 Test

(i) Folds 1-4 Train (j) Fold 5 Test

Figure 12: ALFRED Seq2Seq Cross-Validation CE Loss Curves
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(a) Train (b) Test

Figure 13: ALFRED Seq2Seq Task Generalization CE Loss Curves

(a) Train (b) Test

Figure 14: ALFRED Seq2Seq Scene Diversity CE Loss Curves

(a) Simulation Teleoperation (b) Real Command Collection

Figure 15: Google Forms
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