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Abstract: Dynamic scene understanding has long been a challenge in robotic
applications. Earlier approaches to dynamic mapping focused on mitigating the
impact of short-term dynamic objects in view, typically by removing or tracking
masks for specific object categories while estimating camera motion. However,
these methods often struggle to handle long-term scene changes. Recent efforts
have addressed the object association problem in long-term dynamic environments
using neural networks trained on synthetic datasets, though these approaches still
rely on predefined object shapes and categories. Other methods leverage visual,
geometric, or semantic clues as heuristics for association. In this work, we in-
troduce BYE, a class-agnostic per-scene point cloud encoder that eliminates the
need for predefined categories, shape priors, or large association datasets. It re-
quires only a single sequence of exploration data for training and can efficiently
perform object association in the face of dynamic changes.

Keywords: Representation Learning, Dynamic Mapping, Robot Navigation,
Scene Understanding

1 Introduction

Interacting with the physical environment is a dynamic experience. On the one hand, numerous
objects are moving in view in our daily lives such as humans, animals, cars, and machines and we
need to reason, react, avoid, maneuver, or operate, processing the information instantly. On the
other hand, beyond our sight, the environment is also evolving. Objects were moved to new places,
drawers were pulled out, screens were turned off, and containers were refilled. When we revisit or
explore, we constantly associate new observations with our past experiences and keep updating our
knowledge base. We ask the question: can a robot have the ability to associate new observations
with its previous knowledge base?

Despite the recent spike of robot generalist policy research [1, 2, 3, 4] which aims at training a reac-
tive robot policy that handles dynamics through learning from a plethora of data, the majority of the
robotic systems still rely on a knowledge base of the environment to operate within a certain scope.
Such a knowledge base is usually a scene representation, namely, a map. Previous dynamic mapping
techniques focused on reducing the impact of short-term dynamic objects in view by removing or
tracking certain classes of semantic masks during camera pose estimation [5, 6, 7, 8, 9, 10, 11],
which struggles to handle long-term dynamic scenes. Later approaches to long-term dynamic
scene understanding used visual, geometric, or semantic clues as heuristics for associations be-
tween scenes [12, 13]. However, these methods require perfect registration of two scenes. Recently,
researchers proposed to train an encoder-decoder relying on synthetic datasets to perform scene ob-
ject association, registration, and reconstruction across object location changes [14]. However, the
method still depends on a predefined set of object categories and shapes in ShapeNet [15].
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To this end, we introduce BYE, a class-agnostic per-scene point cloud encoder that removes the need
for predefined categories, shape priors, or large association datasets. It only requires a sequence of
exploration data to train and can generalize the association ability to long-term dynamic changes in
the environment. BYE highly resembles a human’s ability to recall objects and their past locations
when seeing objects with similar shapes and appearances in new places. The idea of BYE stems
from the work LangSplat [16] which trains a per-scene autoencoder to encode CLIP features of all
images collected in the same scene into a low dimensional latent space to accelerate the optimization
of Gaussian Splatting [17]. In this work, our major contributions are:

1. We introduce BYE, a novel pipeline to train a per-scene point cloud encoder for object
association in long-term dynamic environments. The training requires only one sequence
of exploration data in the scene.

2. We propose to construct an object memory bank with BYE encoder and all partial point
cloud observations in the exploration data for object association in dynamic scenes, resem-
bling human memory of past experiences.

3. We evaluate our BYE in a photorealistic simulator AI2THOR [18] and our method outper-
forms heuristic baselines based on vision language foundation models.

2 Related Work

Open-Vocabulary Semantic Mapping: In recent years, the advancement of Vision Language Mod-
els and their fine-tuned counterparts [19, 20, 21] have innovated the mapping techniques in robotic
applications such as navigation [22, 23, 24, 25, 26, 27, 28, 29, 30, 31], manipulation [32, 33, 34], and
3D semantic scene understanding [35, 36, 37, 16, 38, 39, 40]. By integrating visual-language fea-
tures into sparse topological nodes [22, 30, 31], dense 3D voxels or 2D pixels [24, 36, 41], discrete
3D locations [25, 27, 26, 29], or implicit neural representations [35, 38, 16, 39], those created maps
can be used to retrieve concepts with natural language descriptions, extending closed-set semantics
retrieval [42, 43, 44, 11] to open-vocabulary level and enabling more flexible and efficient human-
robot interaction in the downstream tasks. However, most of the open-vocabulary semantic mapping
approaches assumes a static environment, struggling to readjust the contents to scene changes in a
long-term dynamic environment. In this work, we propose training a scene-wise point cloud en-
coder to extract class-agnostic, instance-level features, which are stored in an object memory bank
to manage future observations of dynamic scene changes.

Dynamic Scene Understanding: Understanding dynamic environments has posed ongoing chal-
lenges in both academia and industry. One key challenge is the constant motion within the scene,
which complicates tracking and mapping. Early approaches used semantic segmentation masks to
filter or track specific object classes during SLAM optimization [5, 6, 7, 8, 9]. However, these
methods rely on assumptions about static and dynamic categories that are not always valid. For
instance, in outdoor environments, a “car” is classified as dynamic whether it is parked or moving.
Other methods exploited dense tracking like optical flow to model the motion of objects [45], even
achieving non-rigid object tracking [46]. In recent years, advances in neural implicit scene represen-
tation such as NeRF [47] and Gaussian Splatting [17] allows us to render novel views in a dynamic
scene at any historical timestep [10, 48, 49] and even simulate the dynamics based on physical
rules [50]. Another challenge in dynamic environments is handling long-term scene changes. Key
tasks in this area include change detection and change association, which involve tracking changes
such as object displacement, addition, or removal across several sequences of observations. Sev-
eral datasets have been developed to support research in this field [51, 52, 53, 54]. Some methods
tackled change detection by registering two reconstructed scenes, subtracting them, and exploiting
visual, geometric, or semantic clues for matching [12, 55, 13]. Zhu et al. [14] proposed to train an
encoder-decoder network to learn the association, registration, and reconstruction of objects across
changes, while Qiu et al. [56] trained a model to take observations from two sequences and generate
scene change captions. Other approaches has used proximity graphs [55] or object relationship scene
graphs [57] to generate features for association. Recently, probabilistic and optimization-based ap-
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proaches have been applied to build systems addressing change detection, association, and SLAM
in a pipeline [58, 59, 60]. In our work, we tackle long-term change association based on an encoder
trained with a sequence of observations data, and create an object memory bank storing all object
latent representations generated by the encoder for association of new observations.

Shape Representation Learning: A key technique to enhance the understanding of 3D scenes or
objects is 3D shape representation learning. Early approaches focusing on 3D semantic understand-
ing learned global or point-wise representations of point clouds [61, 62, 63], which nowadays serve
as strong backbones for advanced methods. Other works learned implicit functions resembling tra-
ditional 3D shape representations like SDFs and occupancy grids with neural networks [64, 65].
Stemming from the techniques above, other methods explore learning the neural descriptor fields
that map spatial locations relative to a shape to latent features for shape completion [66, 67], reg-
istration [68, 69], manipulation [70], and object-level SLAM [71]. While the methods in those
applications above have shown promising results, most of them require a curated 3D shape dataset
containing a variety of complete shapes spanning different categories. In this work, our method only
needs the observation data during the exploration of a scene to train a scene-wise encoder which can
be used for object association in a long-term dynamic environment. By following the strategy intro-
duced in SimCLR [72], we train an efficient encoder that attracts partial point cloud observations of
the same object while repelling those of different instances.

3 Problem Definition

To formalize the problem, we first define a long-term dynamic environment where the locations of
objects can change between different trials of exploration, but each object remains static during a
single trial. For each exploration trial, at every time step, we assume access to the following data:
an RGB image It, a depth image Dt, 2D instance segmentation masks Mt = {Mtk}k=1,2,...,K ,
and the camera pose Tt. From these data, we can construct an instance-level map where each
object is represented as an independent point cloud. Let the set of point clouds be denoted as
{Pi}i=1,2,...,M , where Pi represents the point cloud of the i-th object, and M is the total number of
objects (instances) in the scene.

The problem of long-term object change detection and association is defined as follows: given two
sets of exploration data, collected before and after several object location changes, find the bijective
mapping of object IDs between the two trials. That is, for each object in the second trial, we must
identify the corresponding object in the first trial. Formally, given the two sets of point clouds
{Pref

i }i=1,2,...,M from the first trial and {Pnew
j }j=1,2,...,M ′ from the second trial (after changes),

the goal is to find a bijection f : 1, 2, . . . ,M ′ → 1, 2, . . . ,M such that if f(j) = i, Pnew
j and Pref

i

correspond to the same object in both trials, where M = M ′ after excluding any added or removed
objects.

4 Method

This work aims to train a per-scene point cloud encoder that extracts latent features of partial object
point cloud observations. With contrastive learning, we ensure that observations from the same
object have similar embeddings while those from different objects are distinct from one another.
By using the encoder to generate latent embeddings of all partial point cloud observations of all
instances in the reference trial of the exploration, we can build a memory bank for the scene objects.
Later, during the new trial of exploration after object relocations have happened, we can use the
same encoder to get the latent embeddings of new point cloud observations, find nearest neighbors
in the memory bank, and thus associate to an instance in the reference trial.

The idea of training a “per-scene” encoder is inspired by LangSplat [16] that trained an autoencoder
mapping high dimensional CLIP features [19] for images collected in a single scene to low dimen-
sional ones, which accelerates the optimization of CLIP-enriched Gaussian Splatting. In our work,
we follow the idea of training a network only for data collected in a single scene during one trial of
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Figure 1: Overview of the pipeline of BYE for long-term dynamic environment understanding. With
the reference trial of exploration data, we first build an instance-level map using the RGB, depth,
instance masks, and odometry inputs, from which we generate a partial object point cloud observa-
tions dataset. Later, we exploit the principles of contrastive learning to train a point cloud encoder
from scratch. Finally, we encode all the partial observations in the dataset into latent embeddings
and associate them with instance labels in the reference exploration trial as the object memory bank.

exploration which inherently closes the door of generalization in novel scenes. However, this could
facilitate object change detection and association in long-term dynamic environments.

In the following, we introduce (i) the construction of an instance-level map which is the prerequisite
of generating training data (Sec. 4.1), (ii) the generation of partial point cloud observation dataset
(Sec. 4.2), (iii) the training method of a per-scene object point cloud encoder with contrastive learn-
ing (Sec. 4.3), (iv) the generation of memory bank (Sec. 4.4), and lastly (v) object association with
the memory bank (Sec. 4.5). The overview of the pipeline is shown in Fig 1.

4.1 Instance-Level Map Construction

We construct the instance-level map with the reference trial of exploration before object relocation.
Given the instance segmentation masks Mt = {Mtk}k=1,2,...,K , depth image Dt, and camera pose
Tt of each frame t in a trial of exploration, we can easily back-project the instance masks into
3D through the depth image, transform them to the global coordinate frame, and either fuse them
with existing global instance point clouds with the instance IDs of those masks or initialize new
global instances. After iterating the process in each frame, we can obtain a list of point clouds
{Pi}i=1,2,...,M with instance IDs i = 1, 2, ...,M in this trial of exploration. For simplicity, we
assume known instance masks and odometry as input to emphasize the effectiveness of our trained
encoder and mitigate the impact of the quality of segmentation and odometry results. However,
this can be easily extended with any existing instance-level mapping techniques such as Concept-
Graphs [30], HOV-SG [31], and so on.

4.2 Partial Point Cloud Observation Data Generation

After obtaining the instance-level map {Pi}i=1,2,...,M , for each instance point cloud Pi, we find
all the instance masks used to generate it and back-project them into camera coordinate frame to
get a list of partial point cloud observations of the instance {Pcam

ir }r=1,2,...,Ri
where Ri is the

total number of masks for object i during this trial of exploration. Each Pcam
ir contains a list of

6-dimensional vectors each storing the 3D position and the RGB values of a point. We then subtract
each point cloud’s 3D coordinate with its mean to obtain a zero-center point cloud P̄ir where xP̄ =
xP − 1

|P|
∑

x∈P x where xP̄ ∈ R3 and xP ∈ R3. For each zero-center point cloud P̄ir, we take
its instance id i as label, forming one data sample as a tuple (P̄ir, i). For simplicity, we denote
all point clouds and their object ID labels as {(P̄k, yk)}k=1,2,...,L where yk is the object ID, and
L =

∑M
i=1 Ri is the total masks number of all objects.
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Figure 2: The architecture of the point cloud encoder. We first follow the architecture of
DGCNN [63] and the training scheme of SimCLR [72], which add one more MLP layer without
normalization following of the embedding output layer and project the representation to low dimen-
sional space for more efficient contrastive learning.
4.3 Training Scene-wise Object Point Cloud Encoder

The main goal of the encoder is to extract a latent representation for a point cloud in a scene so
that the point clouds belonging to the same object have similar embeddings while the point clouds
from different objects are far away from one another in the embedding space. In Sec. 4.2, we
obtain a dataset of point cloud and object label pairs. In this section, we will walk through the
pipeline of training the encoder with contrastive learning. Following the idea of SimCLR [72],
the training pipeline is comprised of five major components: (i) a data preprocessing step, (ii) a
stochastic data augmentation module, (iii) a neural network base encoder E(·), (iv) a small neural
network projection head g(·), and (v) a contrastive loss function. The architecture of the encoder is
shown in Fig. 2. In the following, we will walk through these components.

Data Preprocessing: Due to the variation in the size of different objects, we need to sample the
point clouds to ensure the balance of the training workload. In this work, we use a mixed sampling
strategy. For point clouds with more than 1024 points, we first apply voxel-downsampling to a
resolution of 0.01 meter. If the points number still exceeds 1024, we apply farthest point sampling
to select 1024 points. In this way, we guarantee that the points number is below 1024 and ensure an
efficient training process.

Data Augmentation: In this work, we sequentially apply random jittering of the point positions
with a range of 0 to 0.03 meter, rotation of the whole point cloud around the X-axis, around the
Y-axis, and around the Z-axis of the point cloud P̄k. The rotation around each axis has a range of 0
to 30 degrees.

The Neural Network Base Encoder. We choose the architecture of DGCNN [63] as the backbone
of our method. Thanks to its ability to dynamically capture local geometric relationships, the dy-
namic edge convolutional network can efficiently scale to handle complex structures or sparse point
clouds. Furthermore, the pipeline is compatible with other base encoder backbones [61, 62], allow-
ing for potential improvements when better point cloud processing architectures are discovered. In
this work, we sequentially pass the point cloud into two MLP layers, one dynamic edge CNN, one
MLP layer, one dynamic edge CNN, and one linear layer to generate the embeddings h(P̄) of the
point cloud as is shown in Fig. 2.

Embedding projection head: As in SimCLR [72], we project the embeddings h(P̄) generated by
the backbone above into a low dimensional space g(P̄) = MLP (h(P̄)) with an MLP layer for the
ease of contrastive loss computation. During inference, we don’t apply the final MLP projection
head and directly use h(P̄) as the point cloud representation.

Contrastive Learning Loss: In this work, we use the NT-Xent loss proposed in [73]:

Li,j = − log
exp(gi,g+)/τ∑K
k=1 exp(gi,gk/τ)

(1)

where gi is the anchor embedding, g+ is the positive sample embedding which has the same object
ID as gi while all other {gk}k=1,2,...,K,k ̸=i are negative samples in the batch that have different
object IDs from gi.

Training Details. During each training iteration, we randomly load a batch of 64 data samples,
along with one additional positive sample for each instance (i.e., a sample with the same object ID),
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Figure 3: The process of querying the object memory bank with new exploration trial data. Given
the RGB, depth, and instance masks in the new exploration trial, we extract the partial point cloud
observation, encode the point cloud with the pre-trained per-scene point cloud encoder as in Sec. 4.3,
and obtain a latent embedding which we use to look up the object memory bank (see Sec. 4.4) and
find the K nearest neighboring embeddings. After counting the neighboring embeddings’ instance
labels, we can associate the partial observation to an instance in the reference trial of exploration.

resulting in 128 samples in total and ensuring at least 64 positive pairs. For each instance, all other
instances in the batch, except its positive counterpart, are treated as negative samples. The model
is trained with a learning rate of 0.003 for 300 epochs, using a 90/10 training-validation split. We
evaluate the validation loss every 300 iterations and save the checkpoint with the lowest validation
loss for use in experiments. In the dynamic edge convolutional network, we set k = 10 for the k-NN
search.

4.4 Object Memory Bank Generation

After training the encoder for the scene with the reference trial of exploration data, you can encode
all the partial point cloud observations {P̄l}l=1,2,...,L in your dataset in Sec. 4.2 into the latent
embeddings {h(P̄l)}l=1,2,...,L and associate those embeddings with their corresponding instance ID
labels {yl}l=1,2,...,L, forming embedding-ID pairs {(href

l , yrefl )}l=1,2,...,L (for simplicity, we write
h(P̄l) as href

l ). Since the embeddings and labels are for the reference exploration trial, we add a
superscript of ref to their symbols. We treat these embeddings and labels as the object memory
bank of the scene. Since the object embeddings are translation-invariant, we can easily look up the
memory bank when new observations come after object location changes.

4.5 Object Association in Dynamic Environment

Now we switch to the new trial of exploration data, after a random number of object locations
changes without adding new objects or removing old ones. Given the instance segmentation masks
Mt = {Mtk}k=1,2,...,K , depth image Dt, and camera pose Tt of each frame t in a new trial of
exploration, we can build a new instance-level map as in Sec. 4.1. In addition, for each mask obser-
vation Mtk, we can back-project them into the camera coordinate, center them at their means, and
apply voxel-downsampling to a resolution of 0.01 meter to obtain partial point cloud observations
P̄new
tk as in Sec. 4.2. We can use the trained encoder (see Sec. 4.3) to generate a latent embedding

h(P̄new
tk ) (we write it as hnew

tk for simplicity) for each partial point cloud observation P̄new
tk . In

the following step, we can find the distance of hnew
tk to all the embeddings {href

l }l=1,2,...,L in the
object memory bank created in Sec. 4.4. We take the 10 nearest embeddings and store their object
ID labels in the reference trial. These reference labels are associated with the global object ID in
the new trial in a dictionary {new object ID : reference object IDs}. Whenever there are new
observations for the same new object ID later, the reference object IDs list will be extended with
new labels. During this process, we can use frequency to approximate the probability of association
such that P (f(j) = i|zt=1:n) =

#(yref=i)∑M
m=1 #(yref=m)

where f(·) is the mapping from new trial object

ID j to reference trial object ID i, zt denotes the observations at timestep t, #(yref = i) represents
the count of reference labels i associated with new object j, and M denotes the total number of
objects in reference trial. To determine the final association for a new object ID, we simply retrieve
the reference object ID with the highest probability.
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5 Experimental Results

5.1 Object Association in Long-Term Dynamic Environments

Experiment Setup: To evaluate the association effectiveness of BYE, we collected 10 reference
scenes (kitchens and bedrooms, more details can be found in Appendix Sec. C) and 10 corresponding
change scenes in AI2THOR [18]. A robot was manually controlled to gather data, including RGB
images, depth images, instance masks, and camera poses. For the change scenes, we initialized them
to match the reference scenes, randomly moved some objects, and then collected exploration data
after the changes. For each reference scene, we built an instance-level map, generated a dataset of
partial instance point clouds with labels, trained the encoder, and used the checkpoint with the best
validation loss to create an object memory bank. During the association process, we iterate through
all observations of the new exploration, extracting masked point clouds, back-projecting, centering
them, and generating latent embeddings using the same checkpoint. We then found the 10 nearest
neighbors in the object memory bank for each new observation, keeping a count for each reference
instance ID. This created a mapping from new instance IDs to reference IDs which evolves over time
when more observations come. Finally, we used majority voting to assign the most likely reference
instance ID to each new instance.

Baselines: The goal of the baseline methods is to integrate semantic-rich visual language features
into the segment-level map, namely, associate one feature with each instance. We exploit the open-
vocabulary mapping scheme introduced in HOV-SG [31] as follows. First, we build a voxel feature
map as in VLMaps [24]. This requires a visual encoder that can generate dense pixel-level visual
language features. Here we use LSeg [74], OVSeg [20], and DINOv2 [75] as the encoders in our
baselines. Then we can back-project depth pixels into 3D space, find the voxel they belong to,
and integrate the pixel features into the voxel with mean operation. At the same time, construct
an instance-level map with the instance masks. Finally, after the voxel map and the instance map
are completed, we need to assign one visual language feature to each instance. We first search
for the nearest neighboring voxel for each point in an instance, then collect the voxel’s associated
feature. After collecting all features for all points in one instance, we apply DBSCAN [76] to the
features and find the major cluster’s mean. Then we find the feature with the closest distance to the
cluster mean as the instance’s feature. We build such instance-level feature maps for reference and
new exploration trials for each scene. During association, we simply collect all instance features in
the reference and the new scenes and compute the cosine similarity between each pair of objects.
Finally, we use the Hungarian algorithm to determine the association.

Metrics: We use the association success rate as our metric, which can be defined as the number
of correctly associated objects divided by the total number of objects. Since we are using KNN to
retrieve nearby embeddings’ instance IDs for each observation, after accumulating all observations’
results for one instance in the new trial, there might be multiple IDs associated with it. We can sort
these labels with their count in descending order. We use the object ID with the highest frequency as
the predicted object in our method. In this experiment, we want to test the capability of associating
all objects including the static objects. In total, there are 531 association objects, including 80 object
categories among which 62 categories are movable. We further listed per-class success rates for
movable categories with high frequencies.

Results: The results are shown in Table 1. The first two columns show the methods and the overall
success rates. The rest of the columns show the per-class success rates for movable objects with high
frequencies of occurrence. We observe that BYE outperforms all other baselines by a large margin
with at least 5% improvement. We also plotted the success rate of each tested scene in AI2THOR
as in Fig. 5. In most of the case, BYE achieve the highest recalls.

We further analyzed why BYE performs better than other foundation-model-based embeddings.
Therefore, we also report the per-class success rate of several common categories in the dataset.
In Fig. 4 in the Appendix, we further show the qualitative association results for some categories.
When we first look at objects that are commonly occurring in various datasets like “Garbage Can”,
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“Bowl”, “Stool”, “Bed”, “Desk”, and “Laptop”, fine-tuned VLMs like OVSeg and LSeg perform
well in the association tasks, sometimes even better than BYE. The major reason behind this might
be that the pre-training and fine-tuning processes allow the model to learn reliable and robust features
for those categories. When there are no duplicate objects in the scene (like “Bed” and “Desk”), the
semantic features are representative for those objects and therefore help with association. However,
when we look at less common categories like “Cell Phone”, “Credit Card”, “Key Chain”, and “Pan”,
foundation models struggle to correctly associate them due to their long-tailed characteristics in the
dataset. The benefits of BYE emerge under these circumstances. Since BYE is trained only on the
reference exploration data, which is not restricted by the data distribution that pre-trained models
are accustomed to. BYE only focuses on the geometric and visual characteristics of the objects in
the scenes and learns to differentiate them in the process of contrastive learning.

Table 1: OBJECT ASSOCIATION SUCCESS RATE IN LONG-TERM DYNAMIC ENVIRONMENTS

Method
Success Rate (%)

Overall Garbage Can Bowl Cell Phone Credit Card Stool Bed Bread Desk Key Chain Alarm Clock Laptop Pan
(531) (10) (9) (6) (6) (6) (5) (5) (5) (5) (5) (5) (5)

DINOv2 [75] 68.2 70 55.6 16.7 50 83.3 80 20 80 60 20 60 50
LSeg [74] 69.9 88.9 55.6 16.7 0 100 100 40 40 40 40 100 20
OVSeg [20] 84.7 100 77.8 50 50 100 100 60 80 60 60 100 40
BYE(ours) 89.6 90 66.7 100 100 100 100 100 100 100 80 60 100

The overall and per-class object association success rates in 10 AI2THOR scenes. The number in the parenthesis denotes the total occurrence
number of a specific kind of object.

5.2 Runtime Analysis

Experiment Setup: We use a machine with an AMD EPYC 7543 32-Core Processor CPU and an
NVIDIA A40 GPU with 40 GB VRAM. We load the BYE (DGCNN) encoder in evaluation mode.
We define a dataloader with batch size 1 and use only a single thread for dataloading. Then we
iterate through a dataset of each scene and let the encoder generate latent embeddings in inference
mode. We count the time for preprocessing (downsampling) and generating all embeddings with
partial point cloud observations in the scene and divide the time with the total partial observations
number to get the average runtime of the encoder.

Results: We observe in Table 2 that the average runtime of the encoder without considering the batch
processing is around 20ms which is highly efficient to run at 50 Hz compared to other methods based
on foundation models.

Table 2: RUNTIME ANALYSIS OF BYE

Scene Total Samples number Total Runtime (s) Average Runtime per Sample (ms)

Scene 1 5444 100.0 18.4
Scene 2 7472 150.3 20.1
Scene 3 5010 101.8 20.3
Scene 4 5544 106.4 19.2
Scene 5 6207 125.3 20.2
Scene 6 3149 68.3 21.7
Scene 7 1368 37.0 27.0
Scene 8 2749 62.5 22.7
Scene 9 1644 48.4 29.4
Scene 10 2680 66.6 24.9

Total 41267 866.3 21.0

6 Conclusion

In this work, we investigate a novel way of tackling the object association problem in long-term dy-
namic scenes. By training a per-scene encoder without using category priors, shape priors, and large
datasets, we manage to associate objects across dynamic scenes with high efficiency and accuracy.
However, BYE has the limitations of struggling to detect newly inserted or removed objects. In the
future, we will investigate how such an encoder can be combined with an open-vocabulary map, and
integrated into a real-world robotic navigation system, achieving spatio-temporal open-vocabulary
navigation or object search navigation.
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[42] Ó. M. Mozos, C. Stachniss, A. Rottmann, and W. Burgard. Using adaboost for place label-
ing and topological map building. In Robotics Research: Results of the 12th International
Symposium ISRR, pages 453–472. Springer, 2007.

[43] R. F. Salas-Moreno, R. A. Newcombe, H. Strasdat, P. H. Kelly, and A. J. Davison. Slam++:
Simultaneous localisation and mapping at the level of objects. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 1352–1359, 2013.

[44] J. McCormac, R. Clark, M. Bloesch, A. Davison, and S. Leutenegger. Fusion++: Volumetric
object-level slam. In 2018 international conference on 3D vision (3DV), pages 32–41. IEEE,
2018.

[45] T. Zhang, H. Zhang, Y. Li, Y. Nakamura, and L. Zhang. Flowfusion: Dynamic dense rgb-d
slam based on optical flow. In 2020 IEEE international conference on robotics and automation
(ICRA), pages 7322–7328. IEEE, 2020.

[46] R. A. Newcombe, D. Fox, and S. M. Seitz. Dynamicfusion: Reconstruction and tracking of
non-rigid scenes in real-time. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 343–352, 2015.

11

http://dx.doi.org/10.15607/RSS.2024.XX.077


[47] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi, and R. Ng. Nerf:
Representing scenes as neural radiance fields for view synthesis. Communications of the ACM,
65(1):99–106, 2021.

[48] Z. Yang, H. Yang, Z. Pan, X. Zhu, and L. Zhang. Real-time photorealistic dynamic scene
representation and rendering with 4d gaussian splatting. arXiv preprint arXiv:2310.10642,
2023.

[49] G. Wu, T. Yi, J. Fang, L. Xie, X. Zhang, W. Wei, W. Liu, Q. Tian, and X. Wang. 4d gaussian
splatting for real-time dynamic scene rendering. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 20310–20320, 2024.

[50] T. Xie, Z. Zong, Y. Qiu, X. Li, Y. Feng, Y. Yang, and C. Jiang. Physgaussian: Physics-
integrated 3d gaussians for generative dynamics. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 4389–4398, 2024.

[51] J. Straub, T. Whelan, L. Ma, Y. Chen, E. Wijmans, S. Green, J. J. Engel, R. Mur-Artal,
C. Ren, S. Verma, et al. The replica dataset: A digital replica of indoor spaces. arXiv preprint
arXiv:1906.05797, 2019.

[52] M. Halber, Y. Shi, K. Xu, and T. Funkhouser. Rescan: Inductive instance segmentation for
indoor rgbd scans. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pages 2541–2550, 2019.

[53] J. Wald, A. Avetisyan, N. Navab, F. Tombari, and M. Nießner. Rio: 3d object instance re-
localization in changing indoor environments. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 7658–7667, 2019.

[54] T. Sun, Y. Hao, S. Huang, S. Savarese, K. Schindler, M. Pollefeys, and I. Armeni. Nothing
stands still: A spatiotemporal benchmark on 3d point cloud registration under large geometric
and temporal change. arXiv preprint arXiv:2311.09346, 2023.

[55] J. Fu, Y. Du, K. Singh, J. B. Tenenbaum, and J. J. Leonard. Robust change detection based on
neural descriptor fields. In 2022 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 2817–2824. IEEE, 2022.

[56] Y. Qiu, Y. Satoh, R. Suzuki, K. Iwata, and H. Kataoka. Indoor scene change captioning based
on multimodality data. Sensors, 20(17):4761, 2020.

[57] S. Looper, J. Rodriguez-Puigvert, R. Siegwart, C. Cadena, and L. Schmid. 3d vsg: Long-term
semantic scene change prediction through 3d variable scene graphs. In 2023 IEEE Interna-
tional Conference on Robotics and Automation (ICRA), pages 8179–8186. IEEE, 2023.

[58] J. Qian, V. Chatrath, J. Yang, J. Servos, A. P. Schoellig, and S. L. Waslander. Pocd: Probabilis-
tic object-level change detection and volumetric mapping in semi-static scenes. arXiv preprint
arXiv:2205.01202, 2022.

[59] J. Qian, V. Chatrath, J. Servos, A. Mavrinac, W. Burgard, S. L. Waslander, and A. P. Schoel-
lig. Pov-slam: Probabilistic object-aware variational slam in semi-static environments. arXiv
preprint arXiv:2307.00488, 2023.

[60] L. Schmid, M. Abate, Y. Chang, and L. Carlone. Khronos: A unified approach for spatio-
temporal metric-semantic slam in dynamic environments. In Proc. of Robotics: Science and
Systems (RSS), Delft, Netherlands, July 2024. doi:10.15607/RSS.2024.XX.081.

[61] C. R. Qi, H. Su, K. Mo, and L. J. Guibas. Pointnet: Deep learning on point sets for 3d
classification and segmentation. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 652–660, 2017.

12

http://dx.doi.org/10.15607/RSS.2024.XX.081


[62] C. R. Qi, L. Yi, H. Su, and L. J. Guibas. Pointnet++: Deep hierarchical feature learning on
point sets in a metric space. Advances in neural information processing systems, 30, 2017.

[63] Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M. Solomon. Dynamic graph
cnn for learning on point clouds. ACM Transactions on Graphics (tog), 38(5):1–12, 2019.

[64] J. J. Park, P. Florence, J. Straub, R. Newcombe, and S. Lovegrove. Deepsdf: Learning con-
tinuous signed distance functions for shape representation. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 165–174, 2019.

[65] L. Mescheder, M. Oechsle, M. Niemeyer, S. Nowozin, and A. Geiger. Occupancy networks:
Learning 3d reconstruction in function space. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 4460–4470, 2019.

[66] C. Deng, O. Litany, Y. Duan, A. Poulenard, A. Tagliasacchi, and L. J. Guibas. Vector neu-
rons: A general framework for so (3)-equivariant networks. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 12200–12209, 2021.

[67] Z. Chen and H. Zhang. Learning implicit fields for generative shape modeling. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition, pages 5939–5948,
2019.

[68] C.-W. Lin, T.-I. Chen, H.-Y. Lee, W.-C. Chen, and W. H. Hsu. Coarse-to-fine point cloud
registration with se (3)-equivariant representations. In 2023 IEEE international conference on
robotics and automation (ICRA), pages 2833–2840. IEEE, 2023.

[69] A. Misik, D. Salihu, X. Su, H. Brock, and E. Steinbach. Hegn: Hierarchical equivariant graph
neural network for 9dof point cloud registration. In 2024 IEEE International Conference on
Robotics and Automation (ICRA), pages 6981–6988. IEEE, 2024.

[70] A. Simeonov, Y. Du, A. Tagliasacchi, J. B. Tenenbaum, A. Rodriguez, P. Agrawal, and V. Sitz-
mann. Neural descriptor fields: Se (3)-equivariant object representations for manipulation. In
2022 International Conference on Robotics and Automation (ICRA), pages 6394–6400. IEEE,
2022.

[71] J. Fu, Y. Du, K. Singh, J. B. Tenenbaum, and J. J. Leonard. Neuse: Neural se (3)-equivariant
embedding for consistent spatial understanding with objects. In Proceedings of Robotics:
Science and Systems (RSS), 2023.

[72] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton. A simple framework for contrastive learning
of visual representations. In International conference on machine learning, pages 1597–1607.
PMLR, 2020.

[73] K. Sohn. Improved deep metric learning with multi-class n-pair loss objective. Advances in
neural information processing systems, 29, 2016.

[74] B. Li, K. Q. Weinberger, S. Belongie, V. Koltun, and R. Ranftl. Language-driven semantic
segmentation. In International Conference on Learning Representations, 2022. URL https:

//openreview.net/forum?id=RriDjddCLN.

[75] M. Oquab, T. Darcet, T. Moutakanni, H. Vo, M. Szafraniec, V. Khalidov, P. Fernandez, D. Haz-
iza, F. Massa, A. El-Nouby, et al. Dinov2: Learning robust visual features without supervision.
arXiv preprint arXiv:2304.07193, 2023.

[76] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. Density-based spatial clustering of applications
with noise. In Int. Conf. knowledge discovery and data mining, volume 240, 1996.

13

https://openreview.net/forum?id=RriDjddCLN
https://openreview.net/forum?id=RriDjddCLN


APPENDIX

A Per-Class Object Association Results Visualization
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Figure 4: Per-class object association qualitative results in AI2THOR.

B Per-Scene Association Success Rates

We show the per-scene association success rates in Fig. 5.
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Figure 5: The association success rate in each tested scene in AI2THOR.

C Evaluated Scenes in AI2THOR

We evaluated FloorPlan 1, 2, 4, 5, 6, which are kitchens, and FloorPlan 301-305, which are bed-
rooms.
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