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Abstract: In this paper, we present a novel Online Lifelong Vision Language
architecture, OLiVia-Nav, which uniquely integrates vision-language models
(VLMs) with an online lifelong learning framework for robot social navigation.
We introduce a unique distillation approach, Social Context Contrastive Language
Image Pre-training (SC-CLIP), to transfer the social reasoning capabilities of large
VLMs to a lightweight VLM, in order for OLiVia-Nav to directly encode social
and environment context during robot navigation. These encoded embeddings are
used to generate and select robot social compliant trajectories. The lifelong learn-
ing capabilities of SC-CLIP enable OLiVia-Nav to update the lightweight VLM
with robot trajectory predictions overtime as new social scenarios are encoun-
tered. We conducted extensive real-world experiments in diverse social navigation
scenarios. The results showed that OLiVia-Nav outperformed existing DRL and
VLM methods in terms of mean squared error, Hausdorff loss, and personal space
violation duration. Ablation studies also verified our design choices.
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1 Introduction
Robot social navigation refers to the ability of an autonomous robot to move towards a goal within a
human-centered environment while adhering to socially acceptable norms and behaviors [1]. Mobile
service robots have been deployed in human spaces for tasks such as delivery of medication in
hospitals [2], floor cleaning in office buildings [3], and patrolling for activity monitoring in long-
term care facilities [4]. To promote safety and comfortability with humans while conducting such
tasks, robots should navigate using social-awareness [5]. This includes respecting personal space
[6], interpreting human movement intentions [7], and providing right of way to vulnerable people
[8]. However, performing these social-aware actions can be challenging as robots must react to
human behavior and contexts in real time [9], while dealing with varying social conditions [10].

Existing robot social navigation approaches have mainly used either human-model-based (HMB)
[11]-[18] or human-model-free (HMF) [19]-[22], methods. In HMB methods, human trajectories
are explicitly predicted and then incorporated into a navigation policy using deep reinforcement
learning (DRL) [11]-[18]. HMF methods implicitly account for human trajectories by: 1) learning
social navigation policies using imitation learning (IL) [19], [20], or 2) leveraging social reasoning
capabilities of large foundation models such as large language models (LLMs) [21] or VLMs [22].
However, HMB and HMF methods do not account for social context, such as social scenarios that
entail passing conversational groups or navigating against traffic, or environment context, such as
open spaces versus narrow hallways. These contexts are important for robot path planning [22].
Furthermore, they are unable to adapt to new social scenarios (unexpected human behaviors, changes
in the environment), resulting in degraded performance in real-world deployment [9].

In this paper, we present a novel Online Lifelong Vision Language architecture, OLiVia-Nav, for
mobile robot social navigation, which considers both social and environment context during robot
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trajectory prediction and adapts to new social scenarios. OLiVia-Nav is the first architecture to
leverage both the social reasoning capabilities of large VLMs, and the smaller size and faster re-
sponse time of lightweight VLMs to generate social context embeddings of a robot’s surroundings.
Our main contributions are: 1) the development of a novel distillation process, Social Context Con-
trastive Language Image Pre-training (SC-CLIP), that transfers the social reasoning capabilities of
large VLMs into two lightweight encoders. These encoders extract social context embeddings from
both visual and token semantic features from image and text captions, respectively, for predicting
robot trajectories, and 2) the development of a trajectory prediction network that uniquely utilizes
multi-head attention to account for these social context embeddings during the prediction of socially
compliant robot trajectories. The encoders support online lifelong learning to adapt to new unseen
social navigation scenarios during robot navigation.

2 Related Works

Existing approaches can be categorized into: 1) human-model-based (HMB) methods [11]-[18], 2)
human-model-free (HMF) methods [19]-[22], and 3) lifelong learning methods [23], [24].

Human-Model Based Methods (HMB). In general, HMB methods predict the trajectories of peo-
ple in the robot’s surrounding and then learn a robot social navigation policy that accounts for these
predicted trajectories. Human trajectories have been predicted using constant velocity (CV) models
[16], transformer models [11], [13], [18], or human tracking (HT) models [12], [14], [15] using
RGB images and LiDAR point clouds. In CV models, human trajectories are predicted by assuming
a constant speed and direction [16]. In transformer models, a spatial-temporal graph transformer
is used to encode distance relationships between people overtime to predict their positions [11],
[13], [18]. Lastly, HT models utilize tracker methods such as YOLO [25] to detect and track hu-
man positions using either bounding boxes [12], [15] or LiDAR point clouds [14]. These models
then predict trajectories by estimating velocity and direction from the tracked human positions. The
predicted trajectories are then used to generate social navigation policies by using DRL methods
[11], [13], [14], [16]-[18] or heuristic control methods [12], [15]. Namely, DRL techniques include
actor-critic [11], [14], proximal policy optimization (PPO) [13], [16], [17], and double deep Q net-
work [18], which optimize reward functions to maximize personal space and minimize collisions.
Heuristic control policy methods consist of predefined rules used to generate policies to avoid hu-
man trajectories [12], [15]. The HMB methods are trained using 2D simulated environments, where
humans are represented as point masses [11], [12], [14] [16], [18], or 3D simulated environments
with procedurally generated human trajectories [13], [17].

Human-Model Free Methods (HMF). HMF methods consist of: 1) imitation learning (IL) methods
[19], [20] which learn social navigation policies from expert knowledge in datasets, or 2) large
foundation model methods (e.g., LLMs/VLMs) [21], [22]), that generate robot actions based on their
social reasoning capabilities. IL methods use behavior cloning [19] or transformer architectures [20]
to predict robot trajectories. They have leveraged social navigation datasets such as SCAND [26],
MuSoHu [27] and THOR-Magni [28], which contain expert demonstrations of robot trajectories
from real-world environments. LLMs and VLMs exhibit social reasoning capabilities as they are
pre-trained on internet-scale data [29]. These methods generate social navigation policies in two
stages. Firstly, LLMs and VLMs are prompted to generate social and environment context captions
using audio [21] or image [22] inputs. Secondly, a navigation planner (DRL [21] or the dynamic
window approach (DWA) [22]) use these captions to generate socially compliant navigation actions.

Lifelong Learning Methods. Lifelong learning methods incrementally update navigation model
parameters to adapt to new social scenarios overtime, and have only been applied to HMB methods
[23], [24]. For example, in [23], human trajectories were first tracked using a Kalman filter (KF) with
visual and LiDAR data to estimate their positions and velocities. Lifelong learning was achieved by
updating probability distribution maps with this tracking data, predicting human positions relative
to the robot at discrete future time steps. In [24], a DRL architecture using PPO was trained with the
THOR-Magni dataset [28] to predict human trajectories using gated recurrent units (GRUs). The
predicted trajectories were used to quantify deviations from socially acceptable behaviors through a
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Figure 1: OLiVia-Nav consists of four modules, 1) Social Context Module (SCM) extracts social
context embeddings for trajectory prediction and selection, and to update the social context image
and text encoders for lifelong learning, 2) Trajectory Prediction Module (TPM) generates socially
compliant navigation trajectories using LiDAR data, goal and the social context image embedding,
3) Trajectory Selection Module (TSM) selects the trajectory that follows the high-level navigation
action encoded in the social context text embedding, and 4) Navigation Controller (NC) uses a
Proportional Integral Derivative (PID) controller to follow the selected trajectory.

social cost function, which was incorporated into the DRL reward function. The lifelong learning
process continuously updated the weights for the navigation policy by retraining the model with new
human interaction data collected during navigation.

Summary of Limitations. HMB methods cannot account for social and environmental context in
real-world scenarios [11]-[18]. Lifelong learning approaches using HMB rely on predefined human
motion models in a KF, which lack visual cues and human behavior integration [23]. Additionally,
these methods face sim-to-real gaps due to reliance on simulation-based datasets [24]. HMF meth-
ods using IL [19], [20] are restricted to the social scenarios present in their training data, which
limits generalization to unseen real-world scenarios [26]. LLMs and VLMs are constrained by slow
response times, leading to delayed adaptation to dynamic human movements and increased risk of
collisions [30]. To address these limitations, OLiVia-Nav: 1) leverages SC-CLIP to generate social
context embeddings that encode the robot’s environment, human behavior, and high-level navigation
for trajectory prediction and selection, and 2) incorporates online lifelong learning with lightweight
SC-CLIP encoders that update during navigation to adapt to new, unseen social scenarios.

3 Robot Social Navigation Problem

Robot social navigation addresses the problem of a mobile robot that needs to navigate from its initial
pose (x0, y0, ϕ0) to a goal pose (xG, yG, ϕG) in an unknown environment consisting of dynamic
people. The robot uses RGB images from its onboard camera, IRGB , to detect visual features such
as people and objects, and 3D LiDAR point clouds, L(x,y,z), to provide the 3D structural layout of
the robot’s surrounding. The task is to predict K socially compliant future trajectories, τP , from
(x0, y0, ϕ0) to (xG, yG, ϕG) given an expert demonstration trajectory τE = {(xj , yj , ϕj)}Gj=0:

τP =
{
τPk : τPk =

{
(xk

i , y
k
i , ϕ

k
i )
}G

i=0
, k ∈ [1,K]

}
. (1)

The trajectories, τP , are generated by a deep neural network, fθ(I, L) with learnable parameters, θ.
The overall objective is to learn θ in order to minimize the winner-takes-all (WTA) loss [31] between
the predicted and expert trajectories:

θ∗ = argmin
θ

WTA(fθ(I, L), τ
E). (2)
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4 OLiVia-Nav Architecture
The OLiVia-Nav architecture consists of four main modules, Fig. 1: 1) Social Context Module
(SCM), 2) Trajectory Prediction Network (TPN), 3) Trajectory Selection Module (TSM), and 4)
Navigation Controller (NC).

4.1 Social Context Module (SCM)

The proposed SCM consists of two submodules: 1) Social Context Contrastive Language Image
Pretraining (SC-CLIP), and 2) a Lifelong Learning Updater (LLU), Fig. 1.

Social Context Contrastive Language Image Pretraining (SC-CLIP). We introduce SC-CLIP, a
distillation approach to transfer the social reasoning of a large VLM to two lightweight encoders: a
social context image encoder (SCIE), FI , and a social context text encoder (SCTE), FT . The novelty
of SC-CLIP is its ability to retain the social understanding of a large VLM, enabling OLiVia-Nav to
generalize to diverse social scenarios, without the slow response speed of the large VLM.

The distillation approach consists of two stages. First, a large VLM is used to generate a long
and short text caption, (Tl, Ts), to describe the social and environment context within IRGB , Fig.
2. This context includes descriptions of: 1) the social scenario, 2) objects and people in the en-
vironment, and 3) the high-level navigation action that the robot should follow to remain socially
compliant. Then, in the second stage, SC-CLIP trains the FI and FT in parallel to align the image
embedding, EI , from IRGB , with the corresponding text embedding, ET , from (Tl, Ts), in their
respective embedding spaces. Herein, FI utilizes a ViT-L/14 transformer backbone [32] to extract
visual semantic features from IRGB in order to generate EI . FT utilizes a self-attention transformer
backbone [33] to extract token semantic features from (Tl, Ts) to generate ET . SC-CLIP is trained
using the following loss function [34]:
LSC−CLIP = CE(FI(IRGB) ·FT (Tl)

T , labels)+CE(PCE(FI(IRGB)) ·FT (Ts)
T , labels), (3)

where PCE is the Principal Component Extraction function, which extracts high-level context fea-
tures from FI(IRGB) [35], CE is the cross-entropy loss, and labels are the ground truth indices that
align EI and ET .

The trained (FI ,FT ) are used to incorporate social and environmental context to be used for trajec-
tory prediction and selection. Specifically, FI is used to generate EI , from RGB images as the robot
navigates an environment. FT is used to create DT , of size |DT |, from an offline dataset (discussed
in Section V). During navigation, EI is used for: 1) trajectory prediction by TPN, and 2) retrieving
ET from DT based on a cosine similarity score, for trajectory selection by TSM.

Lifelong Learning Updater (LLU). The objective of the LLU is to update FI and FT during robot
navigation to account for new social scenarios that were not present during training. LLU collects
a batch, BI , of IRGB during navigation and stores the batch in a buffer of size |B|. These images
are passed to a large VLM to obtain the batch, BT , which is also used to update FI and FT . A
Symmetric Image-Text fine-tuning strategy is used for the loss function [36]:

LLLU = −
∑

EI∈VI

log
exp

(
K(EI ,ET )

µ

)
∑

E
′
T∈VT

exp
(

K(EI ,E
′
T )

µ

) , (4)

where VI are image features from batch BI , and VT are the text features from the batch BT , K(·, ·)
measures the cosine similarity score, and µ is the temperature to control the sharpness of the distri-
bution. We denote FI at update iteration i, as F (i)

I , and FT at iteration i, as F (i)
T . The last iteration

is denoted as F (it)
I and F (it)

T , where it represents the latest LLU iteration update. The updated
encoders, F (it)

I and F (it)
T , are used to generate EI and DT , respectively.

4.2 Trajectory Prediction Network (TPN)

We propose a novel TPN to generate socially compliant trajectory candidates, τP , by uniquely in-
corporating LiDAR data L(x,y,z), navigation goal G = (xG, yG, ϕG), and the social context embed-
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Figure 2: Example of a long and short text caption generated by the large VLM for training SC-
CLIP. The long text caption describes the social scenario, objects and people in the environment and
the high-level navigation action for the robot. The short text caption is a summary of the long-text
caption. Image is from the MuSoHu dataset [27].

ding, EI . The TPN consists of a spatial context encoder backbone (SCEB), a multi-head attention
block (MHAB), and a trajectory forecast head (TFH), Fig. 1.

The SCEB consists of two encoders. A LiDAR encoder to extract voxel features for the 3D points
residing in each voxel [37] using five residual blocks [38] in order to obtain the LiDAR embedding
vector, EL. A goal encoder uses a single layer feed-forward network (FFN) and rectified linear unit
(ReLU) activation to obtain the goal embedding vector, EG. EL, EG and EI are fused together
using the MHAB to exchange context-relevant information across each embedding representation.
The attention process starts with a randomly initialized query, Q(0), which passes through three
cross-attention layers: 1) SC-CLIP cross-attention to incorporate social and environment context
from IRGB , 2) LiDAR cross-attention to incorporate geometric and motion features from L(x,y,z),
and 3) goal cross-attention to condition the trajectory generation on G. Each attention block updates
the query sequentially using [39]:

Q(z)
att = LN

(
Q(z) +A(Q(z), ·)

)
, (5)

Q(z+1) = LN
(
Q(z)

att + FFN(Q(z)
att)

)
, (6)

where Q(z)
att represents the intermediate query after performing cross-attention on the zth attention

layer, Q(z) represents the query for the zth attention layer, A represents the cross-attention oper-
ations, LN denotes layer normalization. The final output, Q(3) = Q, is passed into the TFH for
trajectory prediction.

In the TFH, the output query is fed into NGRU GRUs with each predicting one trajectory, τPk . The
outputs are concatenated into a single vector, τP , Eq. 1. The TPN is trained using the WTA loss
function, Eq. 2, to predict multiple trajectories. The TSM then uses τP for trajectory selection.

4.3 Trajectory Selection Module (TSM)

The objective of the TSM is to select a socially compliant trajectory from τP using ET . Namely,
ET is passed through an FFN to produce Eτ , while τP is processed by a separate FFN and GRU to
produce embedding vector EC . The TSM is trained using the following loss function:

LTSM = CE(FFN(EC ⊕Eτ ), k
∗), (7)

where ⊕ represents the concatenation operation and k∗ is an index identifies the trajectory, τ ∗, that
is described by the navigation action in Tl. τ ∗ is used by the NC for execution.
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4.4 Navigation Controller (NC)

The selected τ ∗, is used by NC to generate robot velocities, (v, ω) using a PID controller [40].

5 Datasets
We collected three datasets to train the modules of OLiVia-Nav: 1) Social Context Dataset, DSC ,
using images from MuSoHu [27] to train SC-CLIP, 2) Trajectory Prediction Dataset, DTPN , using
expert trajectories, LiDAR point clouds and RGB images from MuSoHu to train the TPN, and 3)
Trajectory Selection Dataset, DTSM , using expert trajectories from MuSoHu to train the TSM.

Social Context Dataset, DSC . This dataset comprises of 20,000 RGB images, and corresponding
(Tl, Ts), which are generated using GPT4o [30]. We use GPT4o for its ability to generate socially
related and contextually relevant captions [41]. The text captions include descriptions of the social
scenario, objects and people in the scene, and the high-level navigation plan. The database, DT ,
used within the LLU, is curated by taking a randomized subset of Tl from DSC , and generating the
corresponding ET using F (it)

T .

Trajectory Prediction Dataset, DTPN . This dataset comprises of 5,000 expert trajectories, LiDAR
point clouds, and RGB images. The expert trajectories, τE , are represented by a sequence of 10
future robot poses

{
(xE

i , y
E
i , θ

E
i )

}10

i=0
from the current robot pose. For each sequence, all waypoints

are transformed into the reference frame of the initial robot pose, (xE
0 , y

E
0 , θ

E
0 ), for normalization

and consistency in prediction outputs. IRGB , is taken at the robot’s initial pose.

Trajectory Selection Dataset, DTSM . This dataset consists of 20,000 predicted trajectories, τP ,
along with the corresponding RGB images, IRGB , Tl, ET , and the trajectory index, k∗, that corre-
sponds to the high-level action in Tl.

6 Training
OLiVia-Nav was trained in three stages: 1) SCIE and SCTE using the SC-CLIP framework, Eq. 3,
2) TPN in an end-to-end manner, Eq. 2, and 3) TSM based on the predictions of the TPN, Eq. 5 and
6. Training was conducted with NVIDIA H100 GPU with 80GB of VRAM and 32GB of RAM.

SC-CLIP Training. SC-CLIP was trained with a batch size of 256 and a cosine annealing learning
rate scheduler with a learning rate (LR) of 0.0001 [42], to gradually reduce LR over time for conver-
gence. An AdamW optimizer [43] was used with weight decay (WD) of 0.01 to prevent overfitting.
SC-CLIP was trained for 100 epochs.

TPN Training. The TPN was trained with a batch size of 10, LR of 0.0008, and the AdamW
optimizer with WD 0.0001. EI , ET and EG were projected into a common dimension of C = 128
using an FFN. For MHAB, 32 heads were used. The number of predicted trajectories was set to
K = 5, and correspondingly NGRU = 5. TPN was trained for 500 epochs.

TSM Training. The TSM was trained with a batch size of 128 and an LR of 0.00001. A WD of
0.00001 was used with an AdamW optimizer. TSM was trained for 500 epochs similar to TPN.

7 Experiments
We conducted two sets of experiments in: 1) a real-world comparison study with state-of-the-art
(SOTA) social navigation methods, and 2) an ablation study to investigate the design choices of
OLiVia-Nav. We used GPT4o [30] as the large VLM within the SCM.

7.1 Comparison Study

Three metrics were used: 1) mean squared error (MSE) for positional error, 2) Hausdorff loss [44]
for trajectory shape similarity, and 3) personal space violation duration (PSV) for time spent within
0.25 m of a person [45]. Ground truth trajectories were collected via teleoperation. Four social
scenarios with 3 trials each were tested: 1) narrow hallway, Fig. 3(a), 2) blind corner, Fig. 3(b), 3)
navigating static groups, Fig. 3(c), and 4) dynamic groups, Fig. 3(d), similar to [26].
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Figure 3: The four experimental scenarios: (a) narrow hallway, (b) blind corner, (c) static groups +
dynamic people, and (d) dynamic groups + dynamic people. Red arrows show human trajectories,
blue arrows show the robot’s predicted path, and green, white, and black boxes represent dynamic
people, static groups, and dynamic groups, respectively.

Table 1: Comparison Results for the Four Social Scenarios

Scenario Method MSE ↓ Haus ↓ PSV (s) ↓

Narrow Hallway
OLiVia-Nav 0.1075 0.7348 1.2

VLM-Social-Nav 0.1915 0.8785 1.9
MultiSoc 0.2968 0.9095 2.1

Blind Corner
OLiVia-Nav 0.0236 0.2572 0.4

VLM-Social-Nav 0.0755 0.5384 2.6
MultiSoc 0.1021 0.4596 2.8

Static Groups + Dynamic People
OLiVia-Nav 0.2195 0.7563 2.1

VLM-Social-Nav 0.4361 1.5579 3.5
MultiSoc 0.2747 1.1081 3.2

Dynamic Groups + Dynamic People
OLiVia-Nav 0.0733 0.4813 3.3

VLM-Social-Nav 0.1459 0.6832 4.7
MultiSoc 0.1154 0.7929 4.5

↓ indicates that lower values are better.

Comparison Methods. We benchmarked OLiVia-Nav against the following SOTA methods: 1)
VLM-Social-Nav [22]. This HMF approach uses a cost-based planner with GPT4o for social nav-
igation. Costs include 1) obstacle collision from LiDAR, 2) goal position, and 3) social cost from
RGB images via GPT4o. The planner selects the lowest-cost velocity pair (v, ω). We choose VLM-
Social-Nav to assess how GPT4o affects navigation performance, considering its slower response
time; and 2) MultiSoc [16]. This HMB method uses a GNN with attention mechanisms to predict
human trajectories by processing RGB images and LiDAR data. These predictions are integrated
into a DRL navigation policy trained with proximal policy optimization [46], outputting robot ve-
locity commands (v, ω). We choose MultiSoc to benchmark OLiVia-Nav as it is trained in a 2D
simulator with hand-crafted human trajectories, allowing comparison with our method that uses
real-world human trajectories.

Results. The results of the comparison study are presented in Table I. OLiVia-Nav had the lowest
MSE, Hausdorff loss, and PSV across all scenarios, generating social navigation trajectories that
closely match ground truth trajectories in both proximity and shape. OLiVia-Nav utilizes the TPN,
which was trained using IL on a dataset containing real-world human trajectories and diverse envi-
ronments. This enabled OLiVia-Nav to predict robot trajectories that resemble human navigation
behaviors in realistic social scenarios [9]. In contrast, VLM-Social-Nav utilized hand-tuned cost
functions to generate robot trajectories for obstacle avoidance and goal reaching instead of real-
world data. This approach limited the VLM-Social-Nav’s ability to adapt to nuanced real-world
behaviors, such as a robot dynamically adapting its speed and orientation when navigating around
a corner. As a result, VLM-Social-Nav had lower performance than OLiVia-Nav. Lastly, MultiSoc
resulted in robot navigations that had frequent heading direction changes, since social and environ-
ment context were not explicitly incorporated during training [16].
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Table 2: Ablation Study

Before LLU Update After LLU Update
Methods MSE ↓ Haus. ↓ MSE ↓ Haus. ↓

OLiVia-Nav (ours) 0.2981 1.8087 0.2521 1.4893
OLiVia-Nav w/o EI 0.4412 2.3772 0.3701 2.0839
OLiVia-Nav w/o ET 0.3838 2.1063 0.3791 2.0349
OLiVia-Nav w/o EL 0.4382 2.3681 0.4180 2.1894
OLiVia-Nav w/o EG 0.5991 3.1072 0.5393 2.8648

↓ indicates that lower values are better.

In general, OLiVia-Nav demonstrated lower PSV than both VLM-Social-Nav and MultiSoc. VLM-
Social-Nav had a higher PSV due to its slower response speed (∼0.6Hz), compared to OLiVia-Nav
(∼5Hz), as it relied on querying GPT4o to compute social costs. This caused delays in execut-
ing navigation actions which resulted in longer durations of personal space violations. Although
MultiSoc can plan in real time (∼5Hz), it exhibited a higher PSV compared to OLiVia-Nav due to
inaccurate human trajectory predictions. Namely, MultiSoc frequently changed the robot’s heading
direction in response to pose errors in the predicted human trajectories, which resulted in the robot
violating personal space. A video is on our YouTube channel: https://youtu.be/wp9BqxHESTk .

7.2 Ablation Study

We considered: 1) OLiVia-Nav without (w/o) EI to determine the effect of visual semantic features
from IRGB on trajectory prediction in the TPN, 2) OLiVia-Nav w/o ET to evaluate the impact of
token semantic features from (Tl, Ts) on the selected trajectory in TSM, 3) OLiVia-Nav w/o EL to
explore the influence of the LiDAR point cloud embedding on trajectory prediction, and 4) OLiVia-
Nav w/o EG to explore the contribution of goal embeddings on trajectory prediction.

For each of these variants, the performance was evaluated twice; Before LLU Update, using only
F (0)

I and F (0)
T , and After LLU Update, using F (it)

I and F (it)
T , where it = 1. The goal is to investigate

the contribution of the LLU on all variants in terms of adapting to new social scenarios. Our results
for lifelong learning were obtained using a hold-out test dataset in MuSoHu.

Results. The ablation study results are presented in Table II. The Before LLU Update results show
that the OLiVia-Nav had the lowest MSE and Hausdorff loss compared to all variants. The After
LLU Update results also showed OLiVia-Nav having the lowest MSE and Hausdorff loss of 0.2521
and 1.4893, respectively. All ablation variants also improved their performance with the updates.
For example, OLiVia-Nav w/o EI achieved a higher MSE and Hausdorff loss compared to OLiVia-
Nav as the predicted robot trajectories did not consider social and environment context. OLiVia-
Nav w/o ET also achieved degraded navigation performance as the variant was unable to utilize
high-level action information from this embedding, resulting in the random selection of trajectories.
As OLiVia-Nav w/o EL did not the use the LiDAR embedding, trajectory predictions resulted in
collisions with people. Lastly, OLiVia-Nav w/o EG achieved the lowest performance since this
variant did not use navigation goals. This prevented the robot from arriving at its desired goal pose.

8 Conclusion
In this paper, we present a novel lifelong vision language architecture OLiVia-Nav which uses VLMs
to address the robot social navigation problem in dynamic human environments. Our approach
introduces a novel distillation process, SC-CLIP, to leverage the social reasoning capabilities of large
VLMs for trajectory prediction while being able to adapt online to new scenarios using the lifelong
learning ability of the lightweight VLM. Extensive real-world experiments demonstrate that OLiVia-
Nav follows expert trajectories more accurately compared to SOTA methods. Furthermore, ablation
studies show the importance of each of the embeddings on robot social navigation performance.
Future work will investigate the performance of the OLiVia-Nav in larger environments with crowds.
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