
STEVE-Audio: Expanding the Goal Conditioning
Modalities of Embodied Agents in Minecraft

Nicholas Lenzen
Bielefeld University, Germany

nicholas.lenzen@uni-bielefeld.de

Amogh Raut
Indian Institute of Technology BHU, Varanasi, India
amoghprashant.raut.cd.mat19@itbhu.ac.in

Andrew Melnik
Bremen University, Germany

Abstract: Recently, the STEVE-1 approach has been introduced as a method
for training generative agents to follow instructions in the form of latent CLIP
embeddings. In this work, we present a methodology to extend the control modal-
ities by learning a mapping from new input modalities to the latent goal space
of the agent. We apply our approach to the challenging Minecraft domain, and
extend the goal conditioning to include the audio modality. The resulting audio-
conditioned agent is able to perform on a comparable level to the original text-
conditioned and visual-conditioned agents. Specifically, we create an Audio-
Video CLIP foundation model for Minecraft and an audio prior network which
together map audio samples to the latent goal space of the STEVE-1 policy. Ad-
ditionally, we highlight the tradeoffs that occur when conditioning on different
modalities. Our training code, evaluation code, and Audio-Video CLIP founda-
tion model for Minecraft are made open-source to help foster further research
into multi-modal generalist sequential decision-making agents.For additional re-
sources, including code and demonstrations, please visit our project website:
https://sites.google.com/itbhu.ac.in/steve-audio.
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1 Introduction

Recent works have shown that we can train generalist sequential decision-making agents [1, 2, 3, 4].
In particular, Lifshitz et al. [4] introduced the STEVE-1 approach for creating generative instruction-
following agents to follow short-horizon instructions without being trained on a specific set of tasks,
by learning to follow instructions represented as latent vectors in a CLIP [5] embedding space.
However, this approach produces generative agents that are limited to following instructions in the
specific input modalities of the CLIP model.

Creating agents which are increasingly multi-modal enables the creation of singular agents that can
leverage the advantages provided by each prompting modality. Modalities like audio and video of-
ten co-occur together, which facilitates the collection of internet-scale datasets with relatively low
effort [3, 4]. Thus, the ability to create increasingly multi-modal agents or extending the prompt-
ing modalities of existing agents is an important area for investigation, as multi-modal agents can
leverage the advantages provided by each prompting modality.

In this work, we introduce a methodology for extending the prompting modalities of generative
agents trained to follow instructions. We apply our methodology to the Minecraft domain by en-
hancing the STEVE-1 Minecraft agent [4] to follow audio prompts in addition to its original text
and visual prompting modalities. Our findings show that the audio-conditioned agent surpasses both
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the text-conditioned and visual-conditioned agents in certain tasks, although it encounters difficul-
ties in others. This suggests that tradeoffs can arise when transitioning between modalities. For
instance, our results indicate that audio prompting may demand less prompt engineering; however,
there are also tasks that cannot be fully conveyed through audio alone.

Generative agents created using the STEVE-1 approach [4] learn to follow instructions represented
as goal embeddings in the latent space of a CLIP model [5]. Our method extends the prompting
modalities of such agents without retraining the policy by 1) training a new CLIP model where
one of the modalities is the new prompting modality, 2) learning a prior which maps from the new
CLIP latent space to the latent space of the CLIP model originally used to train the STEVE-1-based
generative agent. Thus, given a sample instruction in the new modality, we generate an embedding
for the sample using the new CLIP model, then map this embedding to the latent goal space using
the prior, and condition the STEVE-1 policy on the generated latent goal vector to generate behavior
using keyboard/mouse controls in Minecraft.

Our main contributions are as follows:

• We introduce a method for extending the prompting modalities of generative agents.

• We apply our methodology to the Minecraft domain by extending the STEVE-1 Minecraft
agent to follow audio prompts.

• We discuss and demonstrate the tradeoffs that occur when switching between different
prompting modalities in the Minecraft domain.

• Our training code, evaluation code, and Audio-Video CLIP foundation model for Minecraft
are made open-source to help foster further research into multi-modal generalist sequential
decision-making agents.

• We release a 600-hour Audio-Video dataset of Minecraft gameplay sourced from the inter-
net and augmented with task-specific gameplay.

2 Related work

Minecraft for AI Minecraft has become a popular environment for testing AI agents due to its
open-ended nature, providing a broad spectrum of tasks (e.g., [3, 6, 7, 4, 8, 9, 10, 11, 12, 13, 14]).
Frameworks like MineRL [7, 11] and MineDojo [6] facilitated this trend by providing the neces-
sary tools to run AI agents in Minecraft. Notable models include MineCLIP [6], which integrates
Minecraft video and text prompts into a shared latent space, VPT [3], a generative model for be-
havior in Minecraft, STEVE-1 [4], which generates behavior based on visual and text goals. These
models are specifically designed to operate within the Minecraft environment, enabling AI to per-
form a variety of complex tasks. These range from simple activities like collecting blocks and
defeating enemies to more complex challenges such as crafting items, which require accomplishing
numerous secondary tasks.

Multi-modal Decision-Making Several prior works explored the use of LLMs in creating
Minecraft agents that can follow instructions [15, 14, 13, 16]. These works typically use LLMs
to make high-level plans that are then executed by lower-level RL [13] or scripted [17] policies.
JARVIS-1 [14] is an open-world agent that uses a memory-augmented multimodal language model
to achieve planning and control in Minecraft, capable of completing over 200 tasks. Groot [15]
is an agent that learns to follow open-ended instructions by watching gameplay videos, achiev-
ing advanced goal specification and control. MineDreamer [16] is an embodied agent that uses
a Chain-of-Imagination mechanism to effectively follow diverse, abstract, and sequential instruc-
tions in Minecraft. MP5 [18] is a multimodal embodied Minecraft agent that decomposes complex
tasks, designs context-aware plans, and performs goal-conditioned actions in process-dependent and
context-dependent tasks. MUTEX [19] introduces a transformer-based approach for policy learn-
ing from multimodal task specifications, enabling agents to follow instructions and goals across six
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Figure 1: Examples of evaluation tasks within the Minecraft environment, showcasing the observed
ego-centric views as the agent works to achieve the corresponding objectives.

modalities, including video, images, text, and speech. AVLEN [20]introduces a multi-modal hier-
archical reinforcement learning agent that uses audio-visual cues and natural language assistance to
localize audio events and navigate 3D environment.

CLIP for Combining Modalities The introduction of the CLIP model [5] led to the creation of a
multitude of CLIP-based models that combine different modalities into a common latent space e.g.,
AudioCLIP [21] is an extension of the CLIP model that integrates audio processing capabilities with
text and image modalities, achieving results in Environmental Sound Classification. CLIP4VLA
[22] accommodates the audio modality, enabling Vision-Language-Audio multimodal processing for
video retrieval and captioning tasks. CLASP [23] extends the CLIP by incorporating behaviour-text
alignment. MineCLIP [6] is a contrastive video-language model pre-trained on massive YouTube
database. Correlating different modalities made it possible to create models like DALL-E 2 [24]
or the aforementioned STEVE-1, where the generation of one modality is conditioned on another
modality for a given input.
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CLIP for Reinforcement Learning Another possible application of this CLIP method is to use
it for reward shaping in reinforcement learning [25]. This can be done by measuring how similar
the embedding of the current episode is to an embedding created from a goal that the agent should
achieve. This approach is used in the domain of Minecraft [6] as well as other domains including
robotics [26, 27, 28, 23]. Off-the-shelf vision-language models (VLMs), such as the CLIP family,
can be used as effective sources of rewards for training reinforcement learning agents to achieve a
variety of language goals in rich, open-ended environments [27]. CLIP-Motion [26] is a method for
learning reward functions for robotic actions by leveraging a CLIP-based model to process consecu-
tive observations and generalize across various robotic tasks. RoboCLIP [28] is an online imitation
learning method that uses a single video or textual demonstration to generate rewards without man-
ual reward function design, significantly improving zero-shot performance in robot manipulation
tasks by leveraging pretrained Video-and-Language Models (VLMs).

3 Method

In STEVE-1 [4], Lifshitz et al. introduce an approach to train generative instruction-following
agents by learning to follow instructions represented as goal embeddings in the latent space of a
CLIP model [5]. This approach consists of two parts, the policy and a prior. The policy extends the
VPT model [3] in order to enable it to fullfill goals in the form of visual MineCLIP [6] embeddings.
In order to enable the agent to follow instructions given through text, the text encoder of MineCLIP
is employed to encode the text prompt, which is then mapped onto a visual MineCLIP embedding by
the prior network which is a CVAE [29, 30] trained to sample latent visual MineCLIP embeddings
conditioned on a text embedding. However, the resulting agent can only follow the two modalities
of the employed CLIP model (in the case of STEVE-1, the two modalities of MineCLIP are text and
video).

To address this problem, we introduce a methodology for extending the prompting modality of
generative agents trained with the approach proposed by Lifshitz et al. [4]. We train a new CLIP
model where one of the modalities is the new prompting modality. Then, we learn a mapping from
the new CLIP latent space to the CLIP latent space originally used to train the generative agent.
Thus, to follow instructions in the new prompting modality, we encode the instruction with the
corresponding encoder for the new CLIP model, pass it through the prior to obtain a latent goal, and
then pass this latent goal to the policy of the agent trained using the approach from [4].

We apply our methodology to the challenging Minecraft domain, where we extend the STEVE-1
agent to follow audio prompts by creating an Audio-Visual CLIP model for Minecraft. We pick
video as the other modality for our CLIP model since both audio and video are naturally occurring
modalities, which means that we can scalably train the model using unlabelled Minecraft videos.

3.1 Audio-Video CLIP Foundation Model for Minecraft

Our proposed Audio-Video CLIP foundation model consists of a frozen video-encoder and frozen
audio-encoder on top of which we train non-linear transformation networks to transform the encoder
embeddings into a new, shared latent space. We train this model on the Audio-Video dataset as
described in the next subsection. Below, we outline the details of the video encoder, audio encoder,
and transformation networks. See Figure 2 for a visualization of the Audio-Video CLIP model
architecture.

Video Encoder We use the pretrained video encoder from the MineCLIP model [6] which maps
16-frames of video input and text to a joint embedding space. Specifically, the MineCLIP video
encoder consists of a frame-wise image encoder, which creates an embedding for each of the 16 input
frames followed by a temporal pooling network. This network pools the 16 frame-wise embeddings
into a single embedding for the whole video input. We use the attention-based pooling version of
MineCLIP. See [6] for more details about MineCLIP.

4



Figure 2: Our architecture for the Audio-Video CLIP model learns a shared latent space by jointly
training the audio and video transformation networks, which are versions of the mapping network
used by StyleGAN 3 [31]. We utilized frozen pretrained MineCLIP [6] model for the video encoder
and frozen pretrained Audio Spectrogram Transformer for the audio encoder [32].

Audio Encoder We use the pretrained Audio Spectrogram Transfomer (AST) [32] model which
was originally trained to classify audio spectrograms into different categories (i.e., speech, vehicle,
musical instrument, etc.). We embed Minecraft audio samples using AST by first computing the
corresponding spectrogram representation of the audio sample, then passing this spectrogram to the
AST encoder, and using the logits of the model as audio embeddings.

Transformation Networks The MineCLIP video encoder and AST audio encoder weights are
frozen, but we also train non-linear transformation networks on top of these models to transform the
latent embeddings from each encoder to a new shared latent space. These transformation networks
serve two purposes. First, training one transformation network is necessary to ensure that the latent
vectors have the same size. Second, training both transformation networks allows our Audio-Video
CLIP model to learn its own latent space. For example, if we only added a learned transformation
network to the audio encoder, then the objective of the audio encoder’s transformation network
would be to mimic the latent space of the MineCLIP video encoder, which could potentially restrict
the expressivity of the learned embeddings. We found that the best-performing architecture for the
transformation network is an upscaled version of the mapping network used by StyleGAN 3 [31, 33].
Specifically, we increase the layer count from eight to ten and the hidden dimension from 512 to
1024. Further, we use cosine similarity as the similarity metric between both the two latent vectors,
as in the original CLIP paper [5]. Both transformation networks map their input dimensionality
(527 for audio embeddings and 512 for video embeddings) to a 512-vector. Training goal of the
Audio-Video CLIP model is to maximize the cosine similarity of matching audio-video pairs, while
simultaneously minimizing the cosine similarity of not matching pairs found in a training batch.
This is achieved by employing a contrastive learning scheme as was used to train the original CLIP
model [5].

3.2 Audio-Video Dataset

To train the Audio-Video CLIP foundation model, we collect a dataset of Minecraft video and ac-
companying audio (where the audio is not overlayed with music or commentary). Most of the dataset
is sourced from YouTube videos of Minecraft gameplay without commentary, where we cut off the
first two minutes of gameplay since many videos start with a short, irrelevant introduction sequence.
We used 25 hours of such data to train the Audio-Video CLIP model which we use to generate our
results. However, the full dataset which we plan to release contains about 600 hours of data. See
appendix for more details about the dataset.
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Figure 3: Our architecture for audio prompting of the STEVE-1 agent [4].

3.3 Training the Audio-Video CLIP Foundation Model

Our training scheme is the same as the original CLIP model [5], except that we do not use a cosine
scheduler [34] to decay the learning rate. As previously mentioned, we freeze the weights of both
encoder models during training and only update the weights of the transformation networks, which
we train for 100 epochs. See Table 1 and 2 in appendix A for a list of hyperparameters.

3.4 Extending STEVE-1 to Condition on Audio Prompts

We aim to extend the STEVE-1 agent to condition on audio prompts. To that end, we train the
Audio-Video CLIP foundation model which learns a new shared latent space for audio and video
modalities. However, we cannot directly condition the STEVE-1 policy on embeddings in this new
latent space, as it is different to the MineCLIP latent space that the policy was trained on. Thus, to
condition the STEVE-1 policy on audio, we must train a prior which maps audio embeddings from
the Audio-Video CLIP model to visual MineCLIP embeddings. Note that this prior does not map
audio embeddings to visual embeddings from our Audio-Video CLIP model, but rather to visual
embedding from the MineCLIP model (which the STEVE-1 policy was trained to follow).

The architecture of our prior, which maps audio embeddings to visual MineCLIP embeddings, is
similar to the prior in STEVE-1 [4], which maps text MineCLIP embeddings to visual MineCLIP
embeddings. It is implemented as a CVAE [29, 30] where the encoder and decoder are both two-
layer MLPs with a hidden dimension of 256 and layer normalization between layers. Thus, to con-
dition STEVE-1 on an audio sample, we first compute the audio embedding using the audio encoder
from our Audio-Video CLIP model. Then, we use the prior to map this audio embedding into the
latent goal space of the policy (which is the visual MineCLIP embedding space), which we can use
to condition the STEVE-1 policy and generate instruction-following behavior with keyboard/mouse
controls in Minecraft. See Figure 3 for the architecture of STEVE-Audio.

3.5 Evaluation

Following the programmatic evaluation methodology from Baker et al. [3] and Lifshitz et al. [4], we
evaluate the performance of the audio-conditioned STEVE-1 agent [4] on a set of short-horizon item-
collection tasks in Minecraft (collecting dirt, wooden logs, seeds, sand, cobblestone, and leaves).
We compare the performance of the audio, text, and visual conditioned versions of STEVE-1 with
minimal prompt engineering. Each task was evaluated on 10 different seeds for 2 minutes each (2400
timesteps at 20 frames-per-second). See Figure 1 for the goal conditioning tasks with corresponding
audio and text prompts.

4 Experimental Results

In our experiments, we aim to answer the following questions:

1. How well does our audio-conditioned STEVE-1 agent perform compared to the original
text-conditioned and visual-conditioned versions?

2. What are the tradeoffs that occur when switching between different prompting modalities?
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Figure 4: Performance comparison of audio-conditioned STEVE-1 (created using our proposed
methodology) with the original text-conditioned and visual-conditioned STEVE-1 agents. The last
row consists of three evaluation with each prompting modality on “place” tasks which have am-
biguous or underspecified audio prompts (i.e., audio samples for placing dirt and sand sound very
similar to the audio samples for digging dirt and sand). Results indicate that audio prompting fails
to effectively condition the STEVE-1 policy in these ambiguous or underspecified scenarios. The
black bars represent the 10th, 50th, and 90th percentiles, indicating performance spread across the
different modalities.

4.1 Audio-Conditioned STEVE-1

In Figure 4, we compare the performance of the audio-conditioned STEVE-1 agent to the original
text-conditioned and visual-conditioned STEVE-1 agents [4] on various short-horizon tasks. The
audio-conditioned agent performs better than the visual-conditioned agent in four of the six evalu-
ation tasks. Specifically, the audio-conditioned agent collects 6.4× more wood, 7.25× more dirt,
5.1× more sand, and 1.6× more leaves than the visual-conditioned agent, while it collects 0.9×
the amount of seeds and 0.7× the amount of cobblestone. When compared to the text-conditioned
agent, the audio-conditioned agent collects 1.8× more wood, 8× more dirt, 2.2× more seeds, 17.7×
more sand, and 2.9× more leaves, while it collects 0.7× the amount of cobblestone (the only task
where the audio-conditioned agent performed worse than the text-conditioned agent). These re-
sults indicate that our audio-conditioned agent generally performs better than the original STEVE-1
modalities, which suggests that our proposed methodology is an effective way to extend the prompt-
ing modalities of generative agents created using the STEVE-1 approach.

We will make the generated videos available on our website as part of the supplementary material
submission.

4.2 Multi-Modality Tradeoffs

Our proposed method enables adding new prompting modalities to existing generative agents cre-
ated with the STEVE-1 approach [4]. In this section, we investigate the tradeoffs that occur when
switching between different prompting modalities. In fact, as described below, these positive and
negative tradeoffs are a significant motivation for creating such multi-modal agents and extending
the prompting modalities of existing agents. That is, creating increasingly multi-modal agents allows
them to take advantage of the positive tradeoffs provided by each prompting modality.
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4.2.1 Versatility VS. Performance

An important tradeoff to consider between modalities is the ability of each modality to unambigu-
ously express complex instructions. For example, the text modality facilitates communicating com-
plex tasks with decision-making agents (i.e., “obtain a bed and place it on your roof next to your
dog, but don’t steal the bed from a village”). On the other hand, such complex instructions would be
difficult to communicate with other modalities like audio. Furthermore, beyond specifying complex
instructions, it seems that prompting with audio can lead to scenarios where the instruction is too
ambiguous or non-specific to be completed. To investigate this, we evaluate the text, visual, and
audio versions of STEVE-1 on three different “placing” tasks, where the audio is more ambiguous.
For example, the audio samples for placing dirt sounds very similar to the ones for digging dirt , and
audio samples for placing wooden planks or cobblestone sounds very similar to the audio samples
for placing any Minecraft item that is made out of wood or stone, respectively.The last row of Fig-
ure 4 shows that audio prompting generally performs much poorer than text and visual prompting,
which supports the idea that some tasks are more ambiguous in other modalities (i.e., audio).

However, despite audio being a more ambiguous way to specify some tasks, the audio-conditioned
STEVE-1 agent generally performs better than the text and visual counterparts. We hypothesize that
this is due to the higher correlation between the audio and video modalities, than exists between text
and video. That is, the Text-Video dataset used to train MineCLIP [6] was sourced from YouTube
videos of Minecraft gameplay and their time-aligned captions. Thus, much of the text in the dataset
is noisy in the sense that the text is unrelated or uncorrelated to the Minecraft behavior observed in
the video (i.e., when someone says “please like this video”). On the other hand, audio and video are
both highly correlated, naturally co-occurring modalities. This means that the audio-video pairs in
our Audio-Video dataset are more highly correlated.

4.2.2 Prompt Engineering

In our experiments, prompts for all three modalities were selected with minimal prompt engineering.
Thus, since audio-conditioning generally yields better performance, our results suggest that audio
prompting might require less prompt engineering than text and visual prompting to perform well.
This requires further investigation but could be explained due to the fact that audio samples are
usually very similar across different demonstrations of the same task. Thus, the audio embeddings
from our Audio-Video CLIP model could be more semantically relevant representations of the task,
less affected by small changes in the prompt (i.e., visual embeddings for the same task could be
affected by random objects moving in the periphery). This may play a role in the improved audio-
conditioning performance. However, more investigation is needed.

5 Conclusion

This paper introduces a methodology for extending the prompting modalities of generative
instruction-following agents. By creating increasingly multi-modal agents, singular agents can
leverage the advantages and tradeoffs provided by different prompting modalities when complet-
ing a task. We apply our methodology to the challenging Minecraft domain and extend the existing
STEVE-1 agent to follow audio prompts as well. The resulting audio-prompted STEVE-Audio
agent outperforms the original text and visual-prompted versions of STEVE-1 on short-horizon
item-collection tasks in Minecraft. Future work should investigate applying this methodology for
extending other generative agents to different sensory modalities and in different domains.

While our method achieves strong results, it has several limitations. First, it requires training a CLIP
model [5] which takes the new prompting modality as one of its inputs and which requires a dataset
of correlated modality-to-modality pairs. Second, our approach is limited by the tradeoffs of the
prompting modalities to which we extend the agent. For example, it is often harder to specify some
tasks using audio prompts compared to text prompts.
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A Dataset and Training

We also augmented our Audio-Video dataset with short 10-20 minute videos that are more specif-
ically relevant to our evaluated set of tasks (an additional two hours in total). That is, we found
that using YouTube data exclusively yielded an underperforming audio-conditioned STEVE-1 agent
(see Experimental results section below), but including a short amount of more task-specific data
significantly improved performance.

To conform with the specifications of the audio and video encoder models, audio is resampled to a
sample rate of 16 kHz and video is downscaled to a resolution of 160 × 256 and set to 32 frames-
per-second, from which we sample 16 evenly distributed frames per sample. We extract audio-video
samples from these videos using a sliding window with a length of one second and an overlap of
75%. See Table 1 and 2 for more details.

Table 1: Dataset Metrics

Image resolution 160× 256
Frame rate 32 fps
Sample rate 16 kHz
Length of samples 1 second
Overlap 75%
Number of train samples 303174
Number of test samples

Audio embedding dimension 527
Video embedding dimension 512

Table 2: Training Hyperparameters

batch size 1024
learning rate 0.001
Number of epochs 100
Adam β1 0.9
Adam β2 0.999
weight decay 0.01
epochs 100
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