
FLaRe: Achieving Masterful and Adaptive
Robot Policies with Large-Scale

Reinforcement Learning Fine-Tuning

Jiaheng Hu1,2, Rose Hendrix1, Ali Farhadi1,3, Aniruddha Kembhavi1,3,
Roberto Martín-Martín2, Peter Stone2,4, Kuo-Hao Zeng1,†, and Kiana Ehsani1,†

1 Allen Institute for Aritifical Intelligence (Ai2)
2 University of Texas, Austin 3 University of Washington 4 Sony AI

† Equal Supervision.

Abstract: In recent years, the Robotics field has initiated several efforts toward
building generalist robot policies through large-scale multi-task Behavior Cloning.
However, direct deployments of these policies have led to unsatisfactory perfor-
mance, where the policy struggles with unseen states and tasks. How can we break
through the performance plateau of these models and elevate their capabilities
to new heights? In this paper, we propose FLaRe, a large-scale Reinforcement
Learning fine-tuning framework that integrates robust pre-trained representations,
large-scale training, and gradient stabilization techniques. Our method aligns
pre-trained policies towards task completion, achieving state-of-the-art (SoTA)
performance both on previously demonstrated and on entirely novel tasks and
embodiments. Specifically, on a set of long-horizon mobile manipulation tasks,
FLaRe achieves an average success rate of 79.5% in unseen environments, with
absolute improvements of +23.6% in simulation and +30.7% on real robots over
prior SoTA methods. By utilizing only sparse rewards, our approach can efficiently
master new capabilities beyond the pretraining data with minimal human effort.
Moreover, we demonstrate rapid adaptation to new embodiments and behaviors
with less than a day of fine-tuning, opening up possibilities for robots to continually
adapt and improve when facing new tasks. Videos can be found on the project
website at robot-flare.github.io

1 INTRODUCTION

Foundation models in computer vision and natural language processing have recently achieved ground-
breaking successes. Large transformer models, such as GPT [1] and SAM [29], have demonstrated
the ability to perform an extensive range of tasks. Inspired by these advances, the robotics community
has set its sights on training high-capacity, multi-task transformers for robotic applications.

One of the prominent methods in this pursuit is large-scale behavior cloning (BC) [48], which
leverages large datasets of real-world and simulated demonstrations (e.g., RT-1 [6], RT-2 [7], RT-
X [42], and SPOC [14]) to train high-capacity policies that can perform many different tasks. While
BC policies have shown promise, they remain fundamentally limited when directly deployed in
the real world: models are constrained to the states observed during training, making it difficult to
generalize beyond expert trajectories. Consequently, these policies often struggle when faced with
unfamiliar states, and fail to recover from errors effectively.

On the other hand, reinforcement learning (RL) [51] offers a complementary approach that directly
optimizes the performance of the robot through trial-and-error learning, and RL algorithms have
achieved many successes when a well-defined reward function is available [53, 62, 65]. However,
many RL algorithms are notoriously sample inefficient, requiring extensive training. As task horizon
increases and action space grows, RL policies struggle to get off the ground due to the large search
space. Moreover, RL’s reliance on hand-crafted reward functions severely limits its scalability.
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Figure 1: FLaRe is a simple but effective approach for large-scale fine-tuning of robotic policies. FLaRe achieves
SoTA performance on simulation (+23.6%) and real-world (+30.7%) benchmarks, can generalize to unseen
tasks, and adapts to new behaviors and embodiments.

Although insufficient for direct deployment, the policies trained through large-scale multi-task
Behavior Cloning already possess extremely valuable features and behavior priors. How can we break
through the performance plateau of these models and elevate their capabilities to new heights? Our
key insight is that, through RL, we can align the behavior of these policies towards true objectives
such as task completion (instead of the BC objective), thereby achieving masterful performance not
only on tasks seen during BC training, but also on novel tasks and embodiments never seen by the
pre-trained policy.

While attempts have been made to fine-tune BC policies with RL [58, 46, 45, 2], these works are only
verified with small-scale networks and in single-task domains. Empirically, we find these methods
ineffective as the capacity of the pre-trained policy increases, where the abrupt shift from BC to RL
results in destructive gradient updates, leading to oscillations or even collapse during RL training.

In FLaRe, we introduce an effective, scalable, and robust solution for fine-tuning large-scale robot
policies with RL. Illustrated in Fig. 1 top-left, FLaRe starts from a multi-task robotics policy, and
fine-tunes it with large-scale RL through extensive use of simulation. To ensure the RL fine-tuning is
stable, FLaRe introduces a set of simple yet highly effective techniques, detailed in Sec. 4.3, that
drastically improve performance and reduce training time compared to previous methods.

FLaRe achieves SoTA performance on household mobile manipulation tasks. In established simu-
lation benchmark [14], it achieves an average 79.5% success rate, +23.6% absolute improvements
over the best baseline. In the real world, FLaRe achieves excellent results (80.7% SR on average),
outperforming the best prior work by +30.7%. Furthermore, FLaRe offers several key advantages:

1. FLaRe enables efficient training with a 15x reduction in training time compared to the
previous SoTA method, using a simple sparse reward without the need for handcrafted
reward functions (Fig 1 top-right).

2. FLaRe allows for continual learning beyond the tasks seen during BC. Even for new tasks
without expert trajectories or shaped rewards, FLaRe can be fine-tuned to achieve state-of-
the-art performance (Fig 1 bottom-left).

3. FLaRe can rapidly adapt to new embodiments and behaviors, significantly enhancing the
base model’s flexibility and applicability during lifelong deployment (Fig 1 bottom-right).

We find that FLaRe marks a promising achievement towards developing highly generalizable robotic
systems that can handle a wide range of tasks in diverse environments in a lifelong fashion.

2 Related Work

2.1 Foundation model for robotics

Following the successes of foundation models in vision [29] and language [1], there has been a
recent trend towards training robotics-specific foundation models [15, 22]. While these models
focus on different robot applications, such as manipulation (e.g. RT-1 [6], RT-2 [7], RT-X[42],
Octo [55], RoboCat [5], OpenVLA [28]), navigation (e.g. ViNT [50]), and mobile manipulation
(e.g. SPOC[14]), they share a similar recipe of training a high-capacity transformer model through
multi-task behavior cloning [48]. As a result, they generate the same end-product: a multi-task
transformer policy, which FLaRe can use as a base model for fine-tuning.
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FLaRe Stabilizes RL Fine-tuning
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Figure 2: FLaRe introduces a series of design choices that help stabilize the RL training process, including
1) fine-tuning from a multi-task robotics policy, 2) large-scale fine-tuning in simulation, 3) using an on-policy
algorithm as opposed to off-policy methods, 4) utilizing smaller learning rate than when performing RL from
scratch, 5) disabling the entropy bonus objective that can potentially distort the policy at the start of the training,
and 6) separating the actor and the critic network, so that the critic update will not influence the policy prediction.

2.2 RL training and fine-tuning of robotics models

While RL has achieved many successes in robotics[53], directly applying RL from scratch often
requires extensive reward engineering and long training time [3, 21, 62, 65]. Hence, previous works
have extensively explored leveraging pretrained models to facilitate RL [52, 27, 54, 38, 2, 19, 17, 24,
59, 30, 36, 45, 4, 46, 68, 60, 58, 20].

However, many of these approaches focus on fine-tuning models that have been pre-trained using
either online RL [52, 27, 54] or offline RL [39, 32, 34, 33], which limits their applicability. This
makes them unsuitable for fine-tuning most existing robotics foundation models, which are typically
trained using Behavior Cloning. Many previous works also require access to the entire offline dataset
during fine-tuning[38, 2, 19, 17, 24, 59, 30, 36, 45], which may be feasible for small-scale data and
low-dimensional observations but is unlikely to be computationally feasible for large-scale data and
image observations, as also noted by Ramrakhya et al [46].

In addition, the techniques proposed in many of these works are only evaluated on simple domains,
with low-dimensional state spaces [45, 17, 38], small-scale network architecture (e.g. MLP)[45, 58, 2],
single-task pretraining and fine-tuning [66, 30], and often no real robot experiments [2, 4, 17, 38].
PIRLNav [46] and JSRL [58] are two works that are closest to our setting, where only a pretrained
policy is required for the fine-tuning phase. However, both of them focus on single-task setting with
small-scale networks and no real robot experiments. In contrast, FLaRe explores fine-tuning from
large robotics models, where both scalability and applicability to real robots are of critical concern.

3 Problem Formulation

We consider each robotics task T ∈ T as a language-conditioned Partially Observable Markov
Decision Process (S, A, P , R, O, L, P (s0), γ), where S is a state space, A is an action space, O is
an observation space, P is a Markovian transition model, L is a set of natural language instruction,
γ is a discount factor, P (s0) is the initial state distribution, and R is a sparse reward function that
takes in a natural language instruction l ∈ L and a state s ∈ S and outputs a binary value indicating
whether a given instruction is completed. For the purpose of this paper, we assume that all tasks have
the same action space (the actuators of the robot) and observation space (the robot’s sensors). Each
task T ∈ T defines a set of natural language instructions LT (e.g., for the task of Object Navigation,
potential instructions can be “go to an apple”, “find a houseplant”, and more). At the start of every
episode, an instruction lT ∈ LT and an initial state s0 ∼ P (s0) will be sampled. Every time a
specific task T ∈ T is given, our goal is to train a policy πT

θ that maximizes the expected return (i.e.
success rate) ELT ,π

∑
t R(st, l) for the given task over the possible language instructions LT .

4 Method

Considerable effort has been devoted to optimizing performance on robotics tasks via training
high-capacity models πθ with large-scale, multi-task imitation learning[14, 6, 7, 42]. In practice,
these efforts lead to unsatisfactory performance due to compounding errors [47], where small action
prediction error leads to state distribution drift. Furthermore, for novel tasks and scenarios where no
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Table 1: Success and Episode-length weighted Success (SEL) against baseline methods on the CHORES[14]
benchmark (in-distribution tasks). Baselines with privileged information are marked in blue . FLaRe signifi-
cantly outperforms the previous SoTA methods.

Success (SEL) ↑ IL+RL: Sparse Reward IL Only RL Only

FLaRe [Ours] PIRLNav JSRL SPOC Poliformer - Sparse Poliformer - Dense EmbSigLIP - Dense

ObjectNav 85.0 (67.6) 20.0 (7.0) 21.0 (15.6) 55.0 (42.2) 14.5 (10.4) 85.5 (61.2) 36.5 (24.5)
Fetch 66.9 (54.7) 0.0 (0.0) 2.9 (2.8) 14.0 (10.5) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)
PickUp 91.8 (90.4) 0.0 (0.0) 50.9 (47.7) 90.1 (86.9) 0.0 (0.0) 90.1 (88.7) 71.9 (52.9)
RoomVisit 70.4 (67.1) 12.5 (11.0) 19.0 (18.6) 40.5 (35.7) 12.5 (12.5) 12.5 (10.9) 16.5 (11.9)

demonstration data is available, these models have shown limited generalization capabilities, likely
due to the limited task coverage of the training data.

FLaRe addresses both problems by fine-tuning the pre-trained model πθ with RL for each given task
T ∈ T . The key idea of FLaRe is to achieve stable and effective RL fine-tuning through a series
of design choices, including 1) utilize a large-scale multi-task model as the base model, 2) achieve
large-scale fine-tuning through extensive use of simulations, and 3) a series of algorithmic design to
stabilize the RL fine-tuning. Together, these design choices enable FLaRe to effectively learn from
sparse reward and achieve good performances. We elaborate in detail on each of these decisions in
the following sections (Fig. 2).

4.1 Fine-tune from a multi-task robotics model

The first key design choice of FLaRe is to start from a multi-task pre-trained large model (i.e. a
foundational robotics model). Compared to fine-tuning from a single-task, small-scale network (as is
often the case in previous works [58, 45, 46, 66]), starting from a robotics foundation model brings
three key benefits. First, models pre-trained on diverse tasks can master more robust representations
and more versatile behavior priors [63], which will benefit the fine-tuning process. Second, the highly
capable network architecture (e.g. large transformer models) that comes with these foundational
robotics models brings good inductive bias that can facilitate generalization [12], which is crucial to
fine-tuning. Most importantly, the multi-task capability of these models allows us to reuse the same
model for fine-tuning for many different tasks. In fact, as we will show in the experiments in Sec. 5.2,
we can even fine-tune for tasks and embodiments that have never been seen by the pre-trained policy
and still achieve good performance.

While our method can in principle work on any foundational robotics model, in this specific work,
we focus on fine-tuning the SPOC model (Fig. 6) [14] — a multi-task transformer model for mobile
manipulation tasks, trained on large-scale shortest path expert trajectories collected in Objaverse-
Populated ProcTHOR houses[31, 11, 9]. We refer the reader to our supplementary material for more
details regarding the SPOC model.

4.2 Large-scale fine-tuning in simulation

The second key design choice of FLaRe is to perform large-scale fine-tuning through extensive use
of simulation. Recent advancements in robotics and embodied AI have given us a set of tools for
simulating robotics tasks [31, 35, 23, 44, 67, 61]. In this work, we utilize AI2THOR [31] to perform
large-scale simulated fine-tuning with diverse objects and scenes, which includes 150k procedurally
generated PROCTHOR houses [9] and 800K+ annotated 3D objects [11].

When using simulation in robotics, addressing the sim-to-real gap [64] becomes a critical challenge.
In FLaRe, similar to Ehsani et al.[14], we employed two techniques to facilitate sim-to-real transfer.
First, we perform extensive domain randomization, including color augmentation, applying random
crops, and posterizing the images. Second, we extract visual features through DinoV2 [41], a
pre-trained foundational vision model, which captures useful features that can generalize across
simulation and the real world.

To ensure large-scale training of the transformer policy and value networks, we utilize the KV-cache
technique[43] to reduce the computational costs during network inference, similar to Zeng et al.[62].
The KV-cache technique caches and reuses the keys and values of earlier observations within an
episode. This reduces the inference complexity of the transformer network from quadratic to linear,
which is crucial for affordable large-scale RL fine-tuning.
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(a) Fetch Task (b) RoomVisit Task (c) ObjNavRelAttr Task (d) ObjNavAfford Task

Figure 3: We evaluate FLaRe on mobile manipulation tasks. (a, b) In-distribution tasks, in unseen environments.
(c, d) Novel tasks that require unseen capabilities from pretraining, in unseen environments. FLaRe excels in
long-horizon tasks, showing strong object recognition, relational reasoning, and exploration abilities.

4.3 Stabilize RL fine-tuning

Finally, we introduce a set of simple but very critical algorithmic choices to ensure the stability of RL
fine-tuning. While these techniques are relatively simple, as we will show in the ablation studies in
Sec. 5.5, each choice is very important to ensure stable training and to obtain good performances.

Using On-policy Algorithms. Off-policy RL methods [37, 18] can utilize off-policy data during
training, and thus bring the promise of sample-efficient RL. However, compared to on-policy methods,
off-policy RL is often less stable and more sensitive to hyperparameters, both in theory and in practice,
due to problems associated with the “deadly triad” [51]. In this work, since we perform fine-tuning
entirely in simulation, we are less constrained by the sample efficiency of our RL algorithms, and
therefore choose to use on-policy algorithms for stable fine-tuning. Specifically, we use PPO [49], a
state-of-the-art on-policy policy gradient method.

Taking Small Update Steps. When setting the learning rate for RL, it is common practice to reuse
a learning rate that has previously achieved success in the same/similar domains. However, what
we found in FLaRe is that fine-tuning from an existing policy requires significantly lower learning
rates than when starting from scratch. For example, in the object navigation task, the previous
state-of-the-art result is achieved with PPO from scratch using a learning rate of 2e− 4. In FLaRe,
when fine-tuning on the exact same task, we have to reduce the learning rate by an order of magnitude
to achieve stable learning. It is important to notice that we do not perform additional LR tuning in
FLaRe - the same learning rate is used for all experiments and tasks.

Disabling Entropy Bonus. The PPO objective [49] contains an entropy bonus, which promotes the
entropy of the action distribution predicted by the policy network to ensure sufficient exploration.
However, we found that when fine-tuning from a pre-trained policy network, this additional entropy
term can quickly distort the policy gradient update at the start of the training, leading to unlearning of
the pre-trained policy. Hence, we remove this entropy bonus term from our PPO update in FLaRe.

Disabling Feature Sharing. When applying RL to high-dimensional observations such as images,
a standard practice is to have a shared feature extractor between the actor and the critic network,
which can facilitate the learning of useful features. However, we found that feature sharing during
RL fine-tuning can actually hurt the performance since the gradient from the critic loss will change
the pre-trained features and lead to the deterioration of the action prediction. Furthermore, during
RL fine-tuning, since the pre-trained foundation model should already capture good representations,
there is no need for the actor and the critic network to share the same feature extractor. Therefore,
in FLaRe, we initialize the policy and the critic network as independent networks, both using the
weight and architecture of the pre-trained transformer policy. The policy head of the critic network is
replaced by a randomly initialized values.

We found that all four training components are important, and in Section 5.5, we show that removing
any one of them results in training collapse.

5 Results

We evaluate FLaRe on a set of navigation and manipulation tasks both in simulation and in the real
world. Through our experiments, we seek to answer the following questions: Q1: Can FLaRe achieve
state-of-the-art performance on tasks both within and outside the training data of the pre-trained
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Table 2: FLaRe can fine-tune for tasks that are never seen by the base model, and achieve state-of-the-art
performance. Baselines with privileged information are marked in blue . Sp: sparse reward. De: dense reward.

Success (SEL) ↑ FLaRe [ours] Poliformer - Sp SPOC++ Poliformer - De

ObjNavRelAttr 71.0 (63.6) 6.7 (6.7) 54.5 (44.6) 36.1 (32.4)
RoomNav 91.6 (85.6) 57.0 (51.8) 74.5 (59.9) 75.0 (62.4)

ObjNavAfford 79.7 (70.6) 35.5 (29.4) 62.4 (50.6) 53.8 (43.1)

policy? Q2: Can FLaRe learn new capabilities never seen during pre-training and generalize to
unseen tasks? Q3: Can the policies learned by FLaRe transfer to the real world? Q4: Can FLaRe
enable efficient adaptation to new robot embodiments and new behavior? Q5: Are the stabilization
techniques in FLaRe necessary to ensure stable fine-tuning?

All of the experiments use the same hyperparameters, specified in the supplementary. Unless stated
otherwise, results for FLaRe are obtained using sparse rewards that correspond to task completion.
Visualizations of the robot trajectories are shown in Fig. 3 and on our project website.

5.1 FLaRe on seen capabilities

First, we evaluate the performance of FLaRe in comparison to prior behavior cloning (BC) and
reinforcement learning (RL) baselines. Specifically, we test FLaRe on CHORES-S [14], a recently
introduced simulation benchmark designed for household robot tasks. CHORES-S encompasses four
task types that require various skills, including navigation, object recognition, object manipulation,
and environment exploration. Similar to [14, 62], the policies use the agent’s RGB observations as
input to predict discrete actions, which represent movements of the base, arm, gripper, and an END
action to signify task completion. For further details on the action space, observation space, and task
definitions, please refer to our project website.

CHORES tasks are very challenging due to their long-horizon nature, partial observability, RGB-only
sensor, and diverse scenes and objects. Therefore, previous methods struggle to complete these tasks.
Since CHORES tasks are in the training data of the SPOC model that FLaRe fine-tunes upon, our
goal is to utilize FLaRe to improve performance on these in-distribution capabilities.

Baselines. Our baselines consist of prior works in imitation learning, reinforcement learning from
scratch, and reinforcement learning fine-tuning from pre-trained policies. Aside from SPOC[14], the
robot foundation model that we fine-tune upon, we additionally compare against Poliformer [62], a
transformer-based RL-from-scratch method that achieved SOTA performance on object navigation;
EmbSigLIP [26], a GRU-based RL-from-scratch method; PIRLNav [46], an RL fine-tuning method
that employs learning rate scheduling to warm-start the value function; and JSRL [58], an off-policy
RL fine-tuning method that gradually “roll in” experiences with the prior policy.

We compare against baselines in two settings: (1) a fair-comparison setting, where the baseline
methods use the same sparse reward as FLaRe, and (2) an unfair-comparison setting, where the
baseline methods use a privileged, task-specific dense reward that has been hand-coded by human
experts. It is important to note that each new task demands significant researcher effort to design and
curate a dense reward function that avoids collapsing during training and is not scalable to new tasks.

To demonstrate the superiority of FLaRe, all baseline methods are trained for more steps than
FLaRe. Specifically, the fair-comparison baselines are trained for 3x more steps on ObjectNav and
RoomVisit, and 2x more steps on Fetch and Pickup. The unfair-comparison baselines are trained
until convergence to obtain the best possible result. Notice that this often means significantly longer
training time. For example, for the Poliformer (Dense) on ObjectNav, the result is obtained after
training for 300M steps - over 15× as many training steps that FLaRe uses on ObjectNav.

Results are shown in Table 1, Fig. 3 (a, b), and Fig. 4(a), where we evaluate on unseen simulated
houses and report Success rate as well as Episode-length weighted Success (SEL [13]) which measures
the efficiency of the policies. As shown by the table, FLaRe not only significantly outperforms the
fair-comparison baselines, but also outperforms the unfair baseline on three out of the four tasks
despite using significantly fewer training steps (Q1).
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Table 3: Real-world results (total of 46 tasks) in an unseen apartment. For manipulation tasks, we report both
full success (policy and heuristic grasping) and policy success (proximity) following [14].

Success Rate ↑ FLaRe [ours] SPOC Poliformer - Dense

ObjectNav 94.4 50.0 83.3
Fetch 66.7 (55.6) 33.3 (11.1) X

PickUp 86.7 (66.7) 66.7 (46.7) X
RoomVisit 75.0 50.0 X

(a) Baselines (b) Ablations

Figure 4: Baseline performances and ablation studies on the Fetch task. FLaRe is the only method that can
achieve good performance on this challenging task.

5.2 FLaRe on novel capabilities

A well-trained robotics foundation model should learn features useful for all robotics tasks, not only
applicable to in-distribution tasks appearing in its original training data. To investigate if FLaRe
can take advantage of these pre-trained features, we examine the performance of FLaRe on a set of
novel capabilities never seen by the foundation model. Specifically, we evaluate FLaRe on three
navigation tasks that specify target objects/locations in different ways and require distinct types of
explorations and skills, including 1) ObjNavRelAttr, which identifies target objects through relative
object attributes comparison (e.g. “find the largest apple”); 2) RoomNav, which requires the robot to
navigate to room types instead of objects (e.g. “go to the kitchen”); and 3) ObjNavAfford, which
requires object affordance understanding (e.g. “find something I can sit on”). Note that new reasoning
skills are required for these unseen tasks; for example, in ObjNavRelAttr, the agent must search the
environment for all objects of the specified type, reason about their properties, and issue a completion
action when it identifies the correct instance.

We compare against the Poliformer [62] baseline described in Sec. 5.1, as well as SPOC++, a BC
baseline that has the same network architecture as SPOC but uses additional expert demonstrations
(1M frames per aforementioned task). Note that these demonstrations are not available to FLaRe, nor
to the SPOC model that FLaRe fine-tunes.

We show the results in Table 2 and Fig. 3 (c, d). On these out-of-distribution tasks that require novel
capabilities, FLaRe achieves state-of-the-art performance without any additional hyperparameter
tuning (Q2), even where the baselines have unfair advantages. It is worth noting that, since specifying
each of these new tasks Tn is as simple as specifying a success criteria Rn and the associated
language instructions Ln, these results imply that we can apply FLaRe to on-the-fly tasks without
much engineering effort. This suggests a path towards continual adaptation.

5.3 FLaRe on real robots

To examine the performance of FLaRe on real robots, we evaluate the policies learned by FLaRe
in a real-world apartment on a Stretch RE-1 [25]. This layout (Fig. 5) is never seen by the robot
during training. We directly deploy policies without any adaptation or real-world fine-tuning, and
leverage a heuristic object grasping model following SPOC [14]. We compare against SPOC and
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Poliformer1 with dense reward, and report the results in Table 3. Sim-to-real approaches introduced in
Sec. 4.2 enable the successes of FLaRe in simulation to directly transfer to the real world, achieving
state-of-the-art performances on a set of real world navigation and mobile manipulation tasks (Q3).

5.4 FLaRe for adaptation

FLaRe opens up the possibilities for learning behaviors not captured by the demonstration data
(and thus the foundation robotics model). We examine this in two setups, cross-objective and
cross-embodiment capabilities of FLaRe (Q4).

5.4.1 Adaptation to New Embodiment

We use FLaRe to fine-tune SPOC (which is trained only on Stretch-RE1) to adapt to Locobot [16].
Locobot has different action space and camera parameters: it lacks the manipulation degrees-of-
freedom that Stretch possesses, but has a rotatable, narrow field-of-view camera mounted lower.
To facilitate cross-embodiment transition, we simply mask out the invalid actions output by the
policy, and repurpose two of the invalid actions to control the camera. FLaRe effectively utilizes the
pre-trained policy to adapt to the new embodiment on ObjectNav, as shown by the table below:

New Embodiment Success Rate ↑ SEL ↑
FLaRe 72.0 47.2

Poliformer zero-shot 57.5 30.1
Poliformer (Sparse Reward) 44.0 29.7

5.4.2 Adaptation to New Behavior

We investigate whether FLaRe can be used to shape a robot’s behavior after the policy is trained,
using only a few training steps. We test two new behaviors: 1) encouraging the agent to be more
efficient (+step penalty −0.01/step), and 2) reducing the number of unwanted collisions with the
environment (+collision penalty −0.5/collision). By adding a reward term tailored to each behavior,
the policy adapts to these new behaviors after just 6 hours of training, with minimal impact on the
success rate. The following table presents the results for the Fetch task:

New Behaviors Success Rate ↑ Episode Length ↓ # of Collisions ↓
FLaRe 66.9 258.2 10.0

+ Step Pen. 65.7 222.8 10.0
+ Coll. Pen. 66.7 251.2 3.1

5.5 Ablation studies

To evaluate whether the techniques proposed in Sec. 4.3 are necessary for the performance of FLaRe,
we evaluate four ablation variants of our method. To evaluate whether using on-policy methods
is important, we tested switching the PPO algorithm by Soft Actor-Critic [18] (SAC). To evaluate
whether a small learning rate is necessary, we tested setting the learning rate to 2e − 4, 10 times
our original learning rate. To evaluate the importance of having separated actor and critic, we tested
Shared AC, where the actor and critic share the transformer encoder and decoder trunk. Finally, we
tested EB=0.2, which set the coefficient of the entropy bonus in PPO to 0.2. We show the training
curves in Fig. 4(b).

Perhaps surprisingly, removing any single one of the stabilizing techniques in FLaRe results in the
success rate quickly collapsing to 0 on the fetch task, while FLaRe learns very robustly with the
same set of hyperparameters across variety of tasks and experiment setups (Q5). This showcases the
importance of all of the techniques introduced in FLaRe.

1Poliformer reported real-world results only for the ObjectNav Task.
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6 Conclusion

FLaRe is an efficient and scalable approach for fine-tuning large-scale robot policies using RL.
It enables effective adaptation to unseen tasks and achieves state-of-the-art performance in both
simulation and real-world settings. FLaRe’s adaptability to new embodiments and behaviors unlocks
the potential for flexible deployment across a wide range of robotic platforms in a lifelong fashion.
FLaRe’s main limitation lies in its reliance on simulation environments for fine-tuning. While
leveraging recent work in simulation generation [10, 56] offers a promising direction, tackling tasks
where robust simulations are unavailable—such as those involving liquids or soft objects—remains
challenging and may require fine-tuning directly in the real world.
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A APPENDIX

A.1 Results Visualization

We encourage the reader to visit our website (robot-flare.github.io) for visualizations of
trajectories generated by FLaRe both in simulation and in the real world, including performances
visualization, behavior analysis, and failure mode analysis.

A.2 Hyperparameter

Training and Model Details
Parameter Value
Total Rollouts 32
Learning Rate 0.0002
Mini Batch per Update 1
Update Repeats 4
Max Gradient Norm 0.5
Discount Value Factor γ 0.99
GAE λ 0.95
PPO Surrogate Objective Clipping 0.1
Value Loss Weight 0.5
Entropy Loss Weight 0.0
Steps for PPO Update 128
Transformer State Encoder Layers 3
Transformer State Encoder Hidden Dims 512
Transformer State Encoder Heads 8
Causal Transformer Deocder Layers 3
Causal Transformer Deocder Hidden Dims 512
Causal Transformer Deocder Heads 8

Table 4: Hyperparameters for training and model architecture.

A.3 Number of Training Steps

The base SPOC model that we evaluted and fine-tuned upon is trained for 50k gradient update
steps on a total of 100k episodes of demonstrations across the CHORES tasks, where the training
hyperparameter and training data is exactly the same as in the original SPOC paper.

For navigation tasks that do not involve manipulating objects (i.e. ObjectNav and RoomVisit), FLaRe
performs RL fine-tuning for 20M steps, while all other fair-comparison baseline methods perform RL
training for 60M steps. For mobile manipulation tasks (i.e. Fetch and Pickup), FLaRe performs RL
fine-tuning for 50M steps, while all other fair-comparison baseline methods perform RL training for
100M steps. For adaptation tasks, we run FLaRe fine-tuning for 50M steps on ObjNavRelAttr and
ObjNavAfford, and 20M steps on RoomNav. For cross-embodiment, we run FLaRe for 30M steps.

All of the aforementioned experiments use the same base SPOC mode, with exactly the same set of
hyperparameters.

A.4 CHORES Benchmark

A big portion of FLaRe’s evaluation is carried out on the CHORES benchmark. We provided
detailed information about this benchmark, including the observation space, action space, and task
specifications.

A.4.1 Observation Space

The observation space of CHORES consists of two ego-centric 384 × 224 RGB camera pointing
towards orthogonal directions, where one points towards the direction of navigation and the other
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Figure 5: The real-world layout that we tested upon

Task Description & Example Max Steps
ObjectNav Locate an object category: “find a mug” 600
PickUp Pick up a specified object in agent line of sight: “pick up a mug” 600
Fetch Find and pick up an object: “locate a mug and pick up that mug” 600
RoomVisit Traverse the house. “Visit every room in this 5-room house. Indicate when you have seen a new room

and when you are done.”
1000

Table 5: CHORES tasks.

points at the arm. Additionally, a natural language text instruction is re-sampled at the start of each
episode and appended to the observation to specify what the robot should be doing.

A.4.2 Action Space

The action space of CHORES consists of 20 discrete actions: Move Base (± 20 cm), Rotate Base
(±6◦, ±30◦), Move Arm (x, z) (±2 cm, ±10 cm), Rotate Grasper (±10◦), pickup, dropoff, done
with subtask, and terminate.

A.4.3 Tasks Specifications

We describe the CHORES tasks in Table. 5. For each task, if the robot exceeds the maximum steps,
the episode is terminated and marked as failed.

For each task, we splited a total of 191,568 houses from ProcThor[9] into training and testing sets
with a ratio of 10:1, to ensure that the test evaluation is conducted in unseen houses.

A.5 The SPOC Model

In this work, we use a slightly modified version of the SPOC model [14] inspired by Poliformer [62],
where the transformer decoder block in SPOC is replaced by the decoder from Llama 2 LLM [57]
to speed up training and inference. At each step, the SPOC model takes in the new observations
consisting of two RGB images and a text instruction. Each of these images are separately passed
through a frozen vision transformer model (DinoV2[41]) to extract a set of visual tokens. These
tokens, along with an embedding of the natural language instructions using a pre-train text encoder
T5[40], are summarized by a transformer state encoder to produce the observation representation. A
causal transformer decoder then decodes the observations feature across all steps within the current
episode into a belief vector that is passed through an actor head to generate the action prediction. We
provide a visualization of our model in Fig. 6, and explain each of these components in detail below.
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A.5.1 Vision Transformer Model

We use DINOv2 as the visual foundation backbone because of its remarkable ability to make dense
predictions that generalize across sim and real. Our input to the visual backbone are two RGB
observations ia and ib. ia ∈ RH×W×3 is captured by the navigation camera and ib ∈ RH×W×3

is captured by manipulation camera, where H and W are the height and width of the image. The
visual backbone then produces a patch-wise representation r ∈ RH

14×
W
14×h, where h is the hidden

dimensions of the visual representations. r is then reshaped and projected to generate visual tokens
vraw ∈ Rnpatch×dencoder . A learnable camera-type embedding is then added to this visual tokens to ensure
the model can differentiate between the navigation and the manipulation cameras, resulting in the
final visual features v. To ensure sim-to-real transfer, we freeze the DinoV2 weight throughout
training.

A.5.2 Transformer State Encoder

This module summarizes the observations at each timestep as a vector s ∈ Rd. The input to this
encoder includes the visual representation v, the text feature g, and a learnable STATE token f .
We concatenate these features together and feed them to a non-causal transformer encoder. This
encoder then returns the output corresponding to the STATE token as the state feature vector. The
transformer state encoder digests both visual and text features, and can thus be seen as generating a
text-conditioned visual state representation.

A.5.3 Causal Transformer Decoder

To deal with partial observability and handle long-horizon tasks, SPOC uses a causal transformer
decoder to perform explicit memory modeling over time. The causal transformer decoder consumes
the visual representations generated by the transformer state encoder, additively combines them
with sinusoidal temporal position encodings and learned previous time step action embeddings, and
generates the belief vector used for action generation.

A.6 Real Robot Setup

Following SPOC [14], we equipped our Stretch RE-1 robot with two identical Intel RealSense 455
fixed cameras, namely the navigation and the manipulation camera. These cameras have a vertical
field of view of 59◦ and are capable of capturing 1280×720 RGB-D images. Both of these cameras
point slightly down, with the horizon at a nominal 30◦, to optimize the agent’s perspective of its
functional workspace. The images returned by these cameras are first resized to 396 × 224, and the
cropped to 384 × 224, to match the image observations during training.

Same as SPOC, we assess the performance of our models on ObjectNav and Fetch in a 6-room apart-
ment also used in Phone2Proc [10], Pickup in RoboThor [8], and RoomVisit in both environments.
The 6-room apartment contains environment variations wholly unseen at train time, including a new
configuration (multiple rooms off a long corridor), two new room types (office and corridor), rooms
with non-orthogonal wall alignment, and many unseen object instances. For each object in ObjectNav
and Fetch, we tested three starting positions: once from the living room, once from the middle of
the corridor, and once from the kitchen. We visualize these starting locations in Fig. 5. Below, we
provide objects that we tested upon in the real world for each tasks.

A.6.1 ObjectNav

Target objects are Sofa, Bed, Chair, Apple, Vase, and Houseplant, each from three starting positions.

A.6.2 Fetch

Target objects are Apple, Vase, and Houseplant from the same three starting positions. In one small
change from ObjectNav episodes, object instances are replaced with instances which better fit into
Stretch’s grasping envelope and in some cases at a better height for interaction, but availability and
placement are nearly identical.
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Figure 6: A visualization of the network architecture of the transformer-based SPOC model that FLaRe fine-tunes
upon.

A.6.3 PickUp

Objects are placed on three different surfaces (coffee table, desk, and nightstand) at three different
heights. Objects are Apple, Houseplant, Spray Bottle, Mug, and Vase.

A.6.4 RoomVisit

The full 6-room apartment is explored, and then partitioned into two 3-room apartments to evaluate the
ability of SPOC to explore large and small spaces. We additionally explore a section of RoboTHOR
and attached workroom as a novel 3-room apartment.
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